Nehari-type ground state solutions for Schrodinger equations including critical exponent

被引:26
作者
Li, Guangbing [1 ]
Tang, X. H. [1 ]
机构
[1] Cent S Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Schrodinger equation; Critical Sobolev exponent; Nehari-type ground state solutions; LINEARLY COUPLED SYSTEMS; SOLITONS;
D O I
10.1016/j.aml.2014.06.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the following system of nonlinear Schrodinger equations: {-Delta u + a(x)u = vertical bar u vertical bar(p-2)u + lambda(x)upsilon, x is an element of R-N, -Delta upsilon + b(x)upsilon = vertical bar upsilon vertical bar(2*-2)upsilon + lambda(x)u, x is an element of R-N, Where + X(X)11, x E RN, where N >= 3, 2 < p < 2* and 2* = 2N/(N - 2) is the critical Sobolev exponent. Under assumptions that a(x), b(x), lambda(x) is an element of C(R-N, R) are all 1-periodic in each of x(1), x(2),...,x(N) and lambda(2)(x) < a(x)b(x), we prove that the above system has a Nehari-type ground state solution when 0 < a(x) < mu(0) for some mu(0) is an element of (0, 1). (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:101 / 106
页数:6
相关论文
共 12 条
[1]   NOVEL SOLITON STATES AND BIFURCATION PHENOMENA IN NONLINEAR FIBER COUPLERS [J].
AKHMEDIEV, N ;
ANKIEWICZ, A .
PHYSICAL REVIEW LETTERS, 1993, 70 (16) :2395-2398
[2]   Multi-bump solitons to linearly coupled systems of nonlinear Schrodinger equations [J].
Ambrosetti, A. ;
Colorado, E. ;
Ruiz, D. .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2007, 30 (01) :85-112
[3]   Solitons of linearly coupled systems of semilinear non-autonomous equations on Rn [J].
Ambrosetti, Antonio ;
Cerami, Giovanna ;
Ruiz, David .
JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 254 (11) :2816-2845
[4]   Standing waves for nonlinear Schrodinger equations with a general nonlinearity [J].
Byeon, Jaeyoung ;
Jeanjean, Louis .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2007, 185 (02) :185-200
[5]  
Chen Y., 2014, J AUST MATH IN PRESS
[6]  
Chen Z, 2011, ADV DIFFERENTIAL EQU, V16, P775
[7]   Ground states for a system of Schrodinger equations with critical exponent [J].
Chen, Zhijie ;
Zou, Wenming .
JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 262 (07) :3091-3107
[8]   Local mountain passes for semilinear elliptic problems in unbounded domains [J].
delPino, M ;
Felmer, PL .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1996, 4 (02) :121-137
[9]   Coupled nonlinear Schrodinger systems with potentials [J].
Pomponio, Alessio .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 227 (01) :258-281
[10]   New Super-quadratic Conditions on Ground State Solutions for Superlinear Schrodinger Equation [J].
Tang, X. H. .
ADVANCED NONLINEAR STUDIES, 2014, 14 (02) :361-373