Nonlinear Analysis of the BOLD Signal

被引:27
作者
Hu, Zhenghui [1 ,2 ]
Zhao, Xiaohu [3 ]
Liu, Huafeng [2 ]
Shi, Pengcheng [1 ,4 ]
机构
[1] Rochester Inst Technol, B Thomas Golisano Coll Comp & Informat Sci, Rochester, NY 14623 USA
[2] Zhejiang Univ, Dept Opt Engn, State Key Lab Modern Opt Instrumentat, Hangzhou 310027, Peoples R China
[3] Tongji Univ, Tongji Hosp, Dept Radiol, Shanghai 200065, Peoples R China
[4] Univ Rochester, Med Ctr, Rochester, NY 14642 USA
来源
EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING | 2009年
基金
中国国家自然科学基金; 国家教育部博士点专项基金资助;
关键词
HEMODYNAMIC-RESPONSE; OXYGEN DELIVERY; BALLOON MODEL; FMRI; ACTIVATION; DYNAMICS; FLOW;
D O I
10.1155/2009/215409
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The linearized filtering approach to the hemodynamic system is limited in capturing the inherent nonlinearities of physiological systems. The nonlinear estimation method therefore should be thought of as a natural way to access the nonlinear data assimilation problem. In this paper, we present a nonlinear filtering algorithm which is computationally expensive compared to the existing linearization filtering algorithms, for hemodynamic data assimilation, to address the deficiencies inherent to linearization. Simultaneous estimation of the physiological states and the system parameters have been demonstrated in a simulated and real data. The method provides more reasonable inference about the parameters of models for hemodynamic data assimilation. Copyright (C) 2009 Zhenghui Hu et al.
引用
收藏
页数:13
相关论文
共 27 条
  • [1] A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking
    Arulampalam, MS
    Maskell, S
    Gordon, N
    Clapp, T
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2002, 50 (02) : 174 - 188
  • [2] Dynamics of blood flow and oxygenation changes during brain activation: The balloon model
    Buxton, RB
    Wong, EC
    Frank, LR
    [J]. MAGNETIC RESONANCE IN MEDICINE, 1998, 39 (06) : 855 - 864
  • [3] Modeling the hemodynamic response to brain activation
    Buxton, RB
    Uludag, K
    Dubowitz, DJ
    Liu, TT
    [J]. NEUROIMAGE, 2004, 23 : S220 - S233
  • [4] Unsupervised robust nonparametric estimation of the hemodynamic response function for any fMRI experiment
    Ciuciu, P
    Poline, JB
    Marrelec, G
    Idier, J
    Pallier, C
    Benali, H
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2003, 22 (10) : 1235 - 1251
  • [5] Using nonlinear models in fMRI data analysis: Model selection and activation detection
    Deneux, Thomas
    Faugeras, Olivier
    [J]. NEUROIMAGE, 2006, 32 (04) : 1669 - 1689
  • [6] der Merwe R. V., 2001, P IEEE INT C AC SPEE, V6, P3461, DOI DOI 10.1109/ICASSP.2001.940586
  • [7] Friston K., 1994, Human Brain Mapping, V1, P153, DOI DOI 10.1002/HBM.460010207
  • [8] DEM: A variational treatment of dynamic systems
    Friston, K. J.
    Trujillo-Barreto, N.
    Daunizeau, J.
    [J]. NEUROIMAGE, 2008, 41 (03) : 849 - 885
  • [9] Variational filtering
    Friston, K. J.
    [J]. NEUROIMAGE, 2008, 41 (03) : 747 - 766
  • [10] Nonlinear responses in fMRI: The balloon model, volterra kernels, and other hemodynamics
    Friston, KJ
    Mechelli, A
    Turner, R
    Price, CJ
    [J]. NEUROIMAGE, 2000, 12 (04) : 466 - 477