Compressive behaviour of additively manufactured AlSi10Mg

被引:24
作者
Hitzler, L. [1 ,2 ]
Schoch, N. [3 ]
Heine, B. [3 ]
Merkel, M. [3 ]
Hall, W. [1 ]
Oechsner, A. [1 ,4 ]
机构
[1] Griffith Univ, Griffith Sch Engn & Built Environm, Parklands Dr, Southport, Qld 4222, Australia
[2] Tech Univ Munich, Inst Mat Sci & Mech Mat, Boltzmannstr 15, D-85748 Garching, Germany
[3] Aalen Univ Appl Sci, Fac Mech Engn & Mat Sci, Beethovenstr 1, D-73430 Aalen, Germany
[4] Esslingen Univ Appl Sci, Fac Mech Engn, Kanalstr 33, D-73728 Esslingen, Germany
关键词
Anisotropy; Young's modulus; selective laser melting; powder-bed; LASER MELTED ALSI10MG; MECHANICAL-PROPERTIES; MICROSTRUCTURE; ALLOY;
D O I
10.1002/mawe.201700239
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The advantages of free form fabrication methods regarding the geometrical flexibility are well known. With the full melting approach of the raw material, as utilized in selective laser melting, this freedom in design is coupled with remarkable mechanical strength. Most studies focused on the tensile characteristics; this study investigates the direction dependent compressive behaviour of selective laser melted AlSi10Mg. The obtained compressive Young's moduli exceeded both the equivalent Young's moduli for the tensile loading and the Young's modulus of the isotropic, conventionally fabricated, bulk base material, ranging as high as 82GPa. The compressive yield strength was found to be similar to the yield point in tensile loading, with the ultimate compressive stress and strain being far superior to their tensile counterpart.
引用
收藏
页码:683 / 688
页数:6
相关论文
共 50 条
  • [1] Tensile and compressive behaviour of additively manufactured AlSi10Mg samples
    Sert, Enes
    Hitzler, L.
    Hafenstein, S.
    Merkel, M.
    Werner, E.
    Oechsner, A.
    PROGRESS IN ADDITIVE MANUFACTURING, 2020, 5 (03) : 305 - 313
  • [2] Tensile and compressive behaviour of additively manufactured AlSi10Mg samples
    Enes Sert
    L. Hitzler
    S. Hafenstein
    M. Merkel
    E. Werner
    A. Öchsner
    Progress in Additive Manufacturing, 2020, 5 : 305 - 313
  • [3] Anisotropy of additively manufactured AlSi10Mg: threads and surface integrity
    Ullah, Rizwan
    Akmal, Jan Sher
    Laakso, Sampsa V. A.
    Niemi, Esko
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2020, 107 (9-10) : 3645 - 3662
  • [4] Relationship between ductility and the porosity of additively manufactured AlSi10Mg
    Laursen, Christopher M.
    DeJong, Stephanie A.
    Dickens, Sara M.
    Exil, Andrea N.
    Susan, Donald F.
    Carroll, Jay D.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2020, 795
  • [5] Shock compression response of additively manufactured AlSi10Mg
    Specht, Paul E.
    Brown, Nathan P.
    JOURNAL OF APPLIED PHYSICS, 2021, 130 (24)
  • [6] Fracture locus of additively manufactured AlSi10Mg alloy
    Logakannan, Krishna Prasath
    Ruan, Dong
    Rengaswamy, Jayaganthan
    Kumar, S.
    Ramachandran, Velmurugan
    THIN-WALLED STRUCTURES, 2023, 184
  • [7] The influence of the characteristic microstructure of additively manufactured AlSi10Mg on the plastic behaviour at various strain rates
    Ghisi, Natalia B.
    Ramos, Henrique
    Kindleyside, Lewis
    Aboulkhair, Nesma T.
    Santiago, Rafael
    MATERIALS & DESIGN, 2022, 223
  • [8] Electrical resistivity of additively manufactured AlSi10Mg for use in electric motors
    Silbernagel, Cassidy
    Ashcroft, Ian
    Dickens, Phill
    Galea, Michael
    ADDITIVE MANUFACTURING, 2018, 21 : 395 - 403
  • [9] Effect of annealing treatment on microstructure and mechanical behaviour of additively manufactured AlSi10Mg alloy
    Gite, Ravindra Eknath
    Wakchaure, Vishnu D.
    Nagare, Prashant N.
    PROGRESS IN ADDITIVE MANUFACTURING, 2024,
  • [10] The Corrosion Behaviour of Additively Manufactured AlSi10Mg Parts Compared to Traditional Al Alloys
    Gatto, Andrea
    Cappelletti, Camilla
    Defanti, Silvio
    Fabbri, Fabrizio
    METALS, 2023, 13 (05)