A Comprehensive Methodology for Development, Parameter Estimation, and Uncertainty Analysis of Group Contribution Based Property Models-An Application to the Heat of Combustion

被引:55
作者
Frutiger, Jerome [1 ]
Marcarie, Camille [1 ]
Abildskov, Jens [1 ]
Sin, Gurkan [1 ]
机构
[1] Tech Univ Denmark, Dept Chem & Biochem Engn, Bldg 229, DK-2800 Lyngby, Denmark
关键词
PRACTICAL IDENTIFIABILITY; PREDICTION; ENTHALPY; ALGORITHM; DESIGN;
D O I
10.1021/acs.jced.5b00750
中图分类号
O414.1 [热力学];
学科分类号
摘要
A rigorous methodology is developed that addresses numerical and statistical issues when developing group contribution (GC) based property models such as regression methods, optimization algorithms, performance statistics, outlier treatment, parameter identifiability, and uncertainty of the prediction. The methodology is evaluated through development of a GC method for the prediction of the heat of combustion (Delta H-c(o)) for pure components. The results showed that robust regression lead to best performance statistics for parameter estimation. The bootstrap method is found to be a valid alternative to calculate parameter estimation errors when underlying distribution of residuals is unknown. Many parameters (first, second, third order group contributions) are found unidentifiable from the typically available data, with large estimation error bounds and significant correlation. Due to this poor parameter identifiability issues, reporting of the 95% confidence intervals of the predicted property values should be mandatory as opposed to reporting only single value prediction, currently the norm in literature. Moreover, inclusion of higher order groups (additional parameters) does not always lead to improved prediction accuracy for the GC-models; in some cases, it may even increase the prediction error (hence worse prediction accuracy). However, additional parameters do not affect calculated 95% confidence interval. Last but not least, the newly developed GC model of the heat of combustion (Delta H-c(o)) shows predictions of great accuracy and quality (the most data falling within the 95% confidence intervals) and provides additional information on the uncertainty of each prediction compared to other Delta H-c(o) models reported in literature.
引用
收藏
页码:602 / 613
页数:12
相关论文
共 48 条
  • [1] [Anonymous], 1973, Math. Program, DOI DOI 10.1007/BF01584660
  • [2] [Anonymous], 1961, P 4 BERK S MATH STAT
  • [3] Analysis of generalized pattern searches
    Audet, C
    Dennis, JE
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2003, 13 (03) : 889 - 903
  • [4] OPTIMAL EXPERIMENTAL-DESIGN FOR PARAMETER-ESTIMATION IN UNSTRUCTURED GROWTH-MODELS
    BALTES, M
    SCHNEIDER, R
    STURM, C
    REUSS, M
    [J]. BIOTECHNOLOGY PROGRESS, 1994, 10 (05) : 480 - 488
  • [5] Practical identifiability of ASM2d parameters -: systematic selection and tuning of parameter subsets
    Brun, R
    Kühni, M
    Siegrist, H
    Gujer, W
    Reichert, P
    [J]. WATER RESEARCH, 2002, 36 (16) : 4113 - 4127
  • [6] Quantitative structure-property relationships and neural networks:: correlation and prediction of physical properties of pure components and mixtures from molecular structure
    Bünz, AP
    Braun, B
    Janowsky, R
    [J]. FLUID PHASE EQUILIBRIA, 1999, 158 : 367 - 374
  • [7] A TRUST REGION ALGORITHM FOR NONLINEARLY CONSTRAINED OPTIMIZATION
    BYRD, RH
    SCHNABEL, RB
    SHULTZ, GA
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1987, 24 (05) : 1152 - 1170
  • [8] Prediction of the net heat of combustion of organic compounds based on atom-type electrotopological state indices
    Cao, H. Y.
    Jiang, J. C.
    Pan, Y.
    Wang, R.
    Cui, Y.
    [J]. JOURNAL OF LOSS PREVENTION IN THE PROCESS INDUSTRIES, 2009, 22 (02) : 222 - 227
  • [9] PREDICTION OF THE ENTHALPY OF COMBUSTION OF ORGANIC-COMPOUNDS
    CARDOZO, RL
    [J]. AICHE JOURNAL, 1986, 32 (05) : 844 - 848
  • [10] Coleman T.F., 1994, MATH PROGRAM, V67, P1, DOI [10.1007/BF01582221, DOI 10.1007/BF01582221]