Improving the Ionic Conductivity of Li1+xAlxTi2-x(PO4)3 in a Solid-State Synthesis by Regulating Li-O Bond with B3+ and Y3+

被引:6
作者
Wang, Ruoyu [1 ]
Chen, Butian [1 ]
Liu, Chong [1 ]
Yin, Wen [2 ]
Chen, Huaican [2 ]
Zhang, Jicheng [1 ]
Zhang, Tianran [1 ]
Sun, Limei [3 ]
Liu, Xiangfeng [1 ]
机构
[1] Univ Chinese Acad Sci, Coll Mat Sci & OptoelectronicTechnol, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
[2] Spallat Neutron Source Sci Ctr, Dongguan 523803, Peoples R China
[3] China Inst Atom Energy, Dept Nucl Phys, Beijing 102413, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
GRAIN-BOUNDARY CONDUCTIVITY; ELECTROCHEMICAL PROPERTIES; LITHIUM; GLASS; ELECTROLYTE; TI; GE; MICROSTRUCTURE; LIZR2(PO4)(3); DIFFRACTION;
D O I
10.1149/1945-7111/acadb3
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Li1+xAlxTi2-x(PO4)(3) (LATP) is a promising solid electrolyte owing to its high stability and ionic conductivity. But the ionic conductivity of LATP prepared by a conventional solid-phase method is usually one order of magnitude lower than the one prepared by the liquid-phase method. Herein, we achieve a high ionic conductivity of 1.2 mS center dot cm(-1) by doping B3+ and Y3+ ions in LATP in a solid-state synthesis, and the roles of the dopants are revealed. The incorporation of B3+ and Y3+ in the lattice broadens the ion migration path and mitigates the Li+ migration energy barrier. On the other hand, the strong electrostatic interaction between B-O and Y-O bond weakens the electrostatic attraction between the Li-O bond, which makes the Li-O bond easier to break, and greatly improves the ion conductivity of LATP. This study sheds light on the facile solid-state synthesis of LATP with a high ion conductivity and accelerates the incoming practical application in the solid-state battery. (c) 2023 The Electrochemical Society ("ECS"). Published on behalf of ECS by IOP Publishing Limited.
引用
收藏
页数:10
相关论文
共 76 条
[1]   CHEMISTRY AND PROPERTIES OF SOLIDS WITH THE [NZP] SKELETON [J].
ALAMO, J .
SOLID STATE IONICS, 1993, 63-5 :547-561
[2]   IONIC-CONDUCTIVITY OF LI14ZN(GEO4)4 (LISICON) [J].
ALPEN, UV ;
BELL, MF ;
WICHELHAUS, W ;
CHEUNG, KY ;
DUDLEY, GJ .
ELECTROCHIMICA ACTA, 1978, 23 (12) :1395-1397
[3]   IONIC-CONDUCTIVITY OF SOLID ELECTROLYTES BASED ON LITHIUM TITANIUM PHOSPHATE [J].
AONO, H ;
SUGIMOTO, E ;
SADAOKA, Y ;
IMANAKA, N ;
ADACHI, G .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1990, 137 (04) :1023-1027
[4]   High lithium ion conducting solid electrolytes based on NASICON Li1+xAlxM2-x(PO4)3 materials (M = Ti, Ge and 0 ≤ x ≤ 0.5) [J].
Arbi, K. ;
Bucheli, W. ;
Jimenez, R. ;
Sanz, J. .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2015, 35 (05) :1477-1484
[5]   Structural Factors That Enhance Lithium Mobility in Fast-Ion Li1+xTi2-xAlx(PO4)3 (0 ≤ x ≤ 0.4) Conductors Investigated by Neutron Diffraction in the Temperature Range 100-500 K [J].
Arbi, K. ;
Hoelzel, M. ;
Kuhn, A. ;
Garcia-Alvarado, F. ;
Sanz, J. .
INORGANIC CHEMISTRY, 2013, 52 (16) :9290-9296
[6]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[7]   Influence of LiBO2 addition on the microstructure and lithium -ion conductivity of Li1+xAlxTi2-x(PO4)3(x=0.3) ceramic electrolyte [J].
Bai, Hainan ;
Hu, Jiulin ;
Li, Xiaoguang ;
Duan, Yusen ;
Shao, Feng ;
Kozawa, Takahiro ;
Naito, Makio ;
Zhang, Jingxian .
CERAMICS INTERNATIONAL, 2018, 44 (06) :6558-6563
[8]   XPS and ionic conductivity studies on Li2O-Al2O3(TiO2 or GeO2)-P2O5 glass-ceramics [J].
Chowdari, BVR ;
Rao, GVS ;
Lee, GYH .
SOLID STATE IONICS, 2000, 136 :1067-1075
[9]   Influence of LiBF4 sintering aid on the microstructure and conductivity of LATP solid electrolyte [J].
Dai, Lijing ;
Wang, Jing ;
Shi, Zhongxiang ;
Yu, Lina ;
Shi, Jun .
CERAMICS INTERNATIONAL, 2021, 47 (08) :11662-11667
[10]   The influence of water on the electrical conductivity of aluminum-substituted lithium titanium phosphates [J].
Dashjav, Enkhtsetseg ;
Ma, Qianli ;
Xu, Qu ;
Tsai, Chih-Long ;
Giarola, Marco ;
Mariotto, Gino ;
Tietz, Frank .
SOLID STATE IONICS, 2018, 321 :83-90