Global stability and positive recurrence of a stochastic SIS model with Levy noise perturbation

被引:19
作者
Caraballo, Tomas [1 ]
Settati, Adel [2 ]
El Fatini, Mohamed [3 ]
Lahrouz, Aadil [2 ]
Imlahi, Abdelouahid [2 ]
机构
[1] Univ Seville, Fac Matemat, Dept Ecuac Diferenciales & Anal Numer, Tarfia S-N, Seville 41012, Spain
[2] Fac Sci & Tech, Dept Math, Lab Math & Applicat, BP 416 Tanger Principale, Tanger, Morocco
[3] Ibn Tofail Univ, FS, Dept Math, BP 133, Kenitra, Morocco
关键词
White noise; Levy jumps; Extinction; Persistence; Positive recurrence; SIRS EPIDEMIC MODEL; DIFFERENTIAL-EQUATIONS; ASYMPTOTIC STABILITY; DYNAMICS; DRIVEN;
D O I
10.1016/j.physa.2019.03.006
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Focusing on epidemic model in random environments, this paper uses white noise and Levy noise to model the dynamics of the SIS epidemic model subject to the random changes of the external environment. We show that the jump encourages the extinction of the disease in the population. We first, give a rigorous proof of the global stability of the disease-free equilibrium state. We also establish sufficient conditions for the persistence of the disease. The presented results are demonstrated by numerical simulations. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:677 / 690
页数:14
相关论文
共 24 条
  • [1] ASYMPTOTIC STABILITY OF STOCHASTIC DIFFERENTIAL EQUATIONS DRIVEN BY LEVY NOISE
    Applebaum, David
    Siakalli, Michailina
    [J]. JOURNAL OF APPLIED PROBABILITY, 2009, 46 (04) : 1116 - 1129
  • [2] Stochastic population dynamics driven by Levy noise
    Bao, Jianhai
    Yuan, Chenggui
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 391 (02) : 363 - 375
  • [3] Convergence rate of numerical solutions to SFDEs with jumps
    Bao, Jianhai
    Boettcher, Bjoern
    Mao, Xuerong
    Yuan, Chenggui
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 236 (02) : 119 - 131
  • [4] Competitive Lotka-Volterra population dynamics with jumps
    Bao, Jianhai
    Mao, Xuerong
    Yin, Geroge
    Yuan, Chenggui
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (17) : 6601 - 6616
  • [5] BERETTA E, 1995, J MATH BIOL, V33, P250, DOI 10.1007/BF00169563
  • [6] A STOCHASTIC SIRI EPIDEMIC MODEL WITH LEVY NOISE
    Berrhazi, Badr-Eddine
    El Fatini, Mohamed
    Caraballo, Tomas
    Pettersson, Roger
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2018, 23 (09): : 3645 - 3661
  • [7] A stochastic threshold for an epidemic model with Beddington-DeAngelis incidence, delayed loss of immunity and Levy noise perturbation
    Berrhazi, Badr-eddine
    El Fatini, Mohamed
    Laaribi, Aziz
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 507 : 312 - 320
  • [8] A stochastic SIRS epidemic model incorporating media coverage and driven by Levy noise
    Berrhazi, Badr-eddine
    El Fatini, Mohamed
    Laaribi, Aziz
    Pettersson, Roger
    Taki, Regragui
    [J]. CHAOS SOLITONS & FRACTALS, 2017, 105 : 60 - 68
  • [9] Capasso V., 2008, MATH STRUCTURES EPID, P188
  • [10] A stochastic model of AIDS and condom use
    Dalal, Nirav
    Greenhalgh, David
    Mao, Xuerong
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 325 (01) : 36 - 53