On ψ-Hilfer Fractional Integro-Differential Equations with Non-Instantaneous Impulsive Conditions

被引:5
作者
Arul, Ramasamy [1 ]
Karthikeyan, Panjayan [2 ]
Karthikeyan, Kulandhaivel [3 ]
Geetha, Palanisamy [3 ]
Alruwaily, Ymnah [4 ]
Almaghamsi, Lamya [5 ]
El-hady, El-sayed [4 ,6 ]
机构
[1] Gnanamani Coll Technol, Dept Math, Namakkal 637018, Tamilnadu, India
[2] Sri Vasavi Coll, Dept Math, Erode 638316, Tamil Nadu, India
[3] KPR Inst Engn & Technol, Dept Math, Coimbatore 641407, Tamil Nadu, India
[4] Jouf Univ, Coll Sci, Math Dept, POB 2014, Sakaka 72388, Saudi Arabia
[5] Univ Jeddah, Coll Sci, Dept Math, POB 80327, Jeddah 21589, Saudi Arabia
[6] Suez Canal Univ, Fac Comp & Informat, Basic Sci Dept, Ismailia 41522, Egypt
关键词
fractional differential equations; Hilfer fractional integro-differential equations; fractional boundary conditions; existence and uniqueness; BOUNDARY-VALUE-PROBLEMS; FIXED-POINT THEOREM; EXISTENCE; STABILITY; INCLUSIONS;
D O I
10.3390/fractalfract6120732
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish sufficient conditions for the existence of solutions of an integral boundary value problem for a psi-Hilfer fractional integro-differential equations with non-instantaneous impulsive conditions. The main results are proved with a suitable fixed point theorem. An example is given to interpret the theoretical results. In this way, we generalize recent interesting results.
引用
收藏
页数:11
相关论文
共 45 条
  • [1] Non-instantaneous impulsive fractional integro-differential equations with proportional fractional derivatives with respect to another function
    Abbas, Mohamed I.
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (13) : 10432 - 10447
  • [2] Abdo MS, 2019, P INDIAN AS-MATH SCI, V129, DOI 10.1007/s12044-019-0514-8
  • [3] Fractional Integro-Differential Equations Involving ψ-Hilfer Fractional Derivative
    Abdo, Mohammed S.
    Panchal, Satish K.
    [J]. ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2019, 11 (02) : 338 - 359
  • [4] NON-INSTANTANEOUS IMPULSES IN CAPUTO FRACTIONAL DIFFERENTIAL EQUATIONS
    Agarwal, Ravi
    Hristova, Snezhana
    O'Regan, Donal
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2017, 20 (03) : 595 - 622
  • [5] Aissani Khalida, 2019, Cubo, V21, P61
  • [6] On new existence results for fractional integro-differential equations with impulsive and integral conditions
    Anguraj, A.
    Karthikeyan, P.
    Rivero, M.
    Trujillo, J. J.
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 66 (12) : 2587 - 2594
  • [7] Non-Instantaneous Impulsive Boundary Value Problems Containing Caputo Fractional Derivative of a Function with Respect to Another Function and Riemann-Stieltjes Fractional Integral Boundary Conditions
    Asawasamrit, Suphawat
    Thadang, Yasintorn
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    [J]. AXIOMS, 2021, 10 (03)
  • [8] NONLOCAL BOUNDARY VALUE PROBLEMS FOR HILFER FRACTIONAL DIFFERENTIAL EQUATIONS
    Asawasamrit, Suphawat
    Kijjathanakorn, Atthapol
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    [J]. BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2018, 55 (06) : 1639 - 1657
  • [9] Novel Stability Results for Caputo Fractional Differential Equations
    Ben Makhlouf, Abdellatif
    El-Hady, El-Sayed
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
  • [10] Computational Methods for Parameter Identification in 2D Fractional System with Riemann-Liouville Derivative
    Brociek, Rafal
    Wajda, Agata
    Lo Sciuto, Grazia
    Slota, Damian
    Capizzi, Giacomo
    [J]. SENSORS, 2022, 22 (09)