Multiple periodic solutions with prescribed minimal period to second-order Hamiltonian systems

被引:5
作者
Precup, Radu [1 ]
机构
[1] Univ Babes Bolyai, Dept Math, Cluj Napoca 400084, Romania
来源
DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL | 2014年 / 29卷 / 03期
关键词
second-order Hamiltonian system; periodic solution; minimal period; anti-periodic solution; multiple solutions; Ekeland's variational principle;
D O I
10.1080/14689367.2014.911410
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new variational method based on Ekeland's principle is introduced for the existence, localization and multiplicity of periodic solutions of a prescribed minimal period to second-order Hamiltonian systems. The oscillatory property at zero or infinity of only one component of the gradient of the potential function is sufficient for the existence of infinitely many solutions. Also, oscillating properties of several components of the gradient of the potential function yield sequences of solutions with some of the components tending in norm to zero and others to infinity.
引用
收藏
页码:424 / 438
页数:15
相关论文
共 22 条
[1]   SOLUTIONS OF MINIMAL PERIOD FOR A CLASS OF CONVEX HAMILTONIAN-SYSTEMS [J].
AMBROSETTI, A ;
MANCINI, G .
MATHEMATISCHE ANNALEN, 1981, 255 (03) :405-421
[2]  
[Anonymous], 1990, Variational Methods: Applications to Non-linear Partial Differential Equations and Hamiltonian Systems
[3]  
Benci V, 1983, 2508 MRC U WISC
[4]   PERIODIC-SOLUTIONS OF NON-LINEAR WAVE-EQUATIONS AND HAMILTONIAN-SYSTEMS [J].
BREZIS, H ;
CORON, JM .
AMERICAN JOURNAL OF MATHEMATICS, 1981, 103 (03) :559-570
[5]   HAMILTONIAN TRAJECTORIES HAVING PRESCRIBED MINIMAL PERIOD [J].
CLARKE, FH ;
EKELAND, I .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1980, 33 (02) :103-116
[6]   PERIODIC SOLUTIONS FOR SECOND ORDER HAMILTONIAN SYSTEMS [J].
D'Agui, Giuseppina ;
Livrea, Roberto .
MATEMATICHE, 2011, 66 (01) :125-+
[7]   PERIODIC-SOLUTIONS WITH PRESCRIBED MINIMAL PERIOD FOR CONVEX AUTONOMOUS HAMILTONIAN-SYSTEMS [J].
EKELAND, I ;
HOFER, H .
INVENTIONES MATHEMATICAE, 1985, 81 (01) :155-188
[8]   Some results on the minimal period problem of nonconvex second order Hamiltonian systems [J].
Fei, GH ;
Wang, TX .
CHINESE ANNALS OF MATHEMATICS SERIES B, 1999, 20 (01) :83-92
[9]   PERIODIC-SOLUTIONS OF CONVEX AUTONOMOUS HAMILTONIAN-SYSTEMS WITH A QUADRATIC GROWTH AT THE ORIGIN AND SUPERQUADRATIC AT INFINITY [J].
GIRARDI, M ;
MATZEU, M .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1987, 147 :21-72
[10]  
Girardi M, 2007, REND LINCEI-MAT APPL, V18, P1