Complexity of controlling quantum many-body dynamics

被引:28
作者
Caneva, T. [1 ,2 ]
Silva, A. [3 ,4 ]
Fazio, R. [5 ,6 ]
Lloyd, S. [7 ]
Calarco, T. [1 ]
Montangero, S. [1 ]
机构
[1] Univ Ulm, Inst Quanteninformationsverarbeitung, D-89069 Ulm, Germany
[2] ICFO, Inst Ciencies Foton, Castelldefels 08860, Barcelona, Spain
[3] SISSA, Int Sch Adv Studies, I-34136 Trieste, Italy
[4] Abdus Salam Int Ctr Theoret Phys, I-34100 Trieste, Italy
[5] Scuola Normale Super Pisa, NEST, I-56126 Pisa, Italy
[6] CNR, Ist Nanosci, I-56126 Pisa, Italy
[7] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
来源
PHYSICAL REVIEW A | 2014年 / 89卷 / 04期
基金
美国国家科学基金会;
关键词
PHYSICS;
D O I
10.1103/PhysRevA.89.042322
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We demonstrate that arbitrary time evolutions of many-body quantum systems can be reversed even in cases when only part of the Hamiltonian can be controlled. The reversed dynamics obtained via optimal controlcontrary to standard time-reversal procedures-is extremely robust to external sources of noise. We provide a lower bound on the control complexity of a many-body quantum dynamics in terms of the dimension of the manifold supporting it, elucidating the role played by integrability in this context.
引用
收藏
页数:5
相关论文
共 27 条
  • [1] [Anonymous], 1989, ADV STUD PURE MATH, DOI DOI 10.2969/ASPM/01910641
  • [2] [Anonymous], 1988, INT J MOD PHYS A, V3, P743
  • [3] Strong and Weak Thermalization of Infinite Nonintegrable Quantum Systems
    Banuls, M. C.
    Cirac, J. I.
    Hastings, M. B.
    [J]. PHYSICAL REVIEW LETTERS, 2011, 106 (05)
  • [4] Bason MG, 2012, NAT PHYS, V8, P147, DOI [10.1038/NPHYS2170, 10.1038/nphys2170]
  • [5] Many-body physics with ultracold gases
    Bloch, Immanuel
    Dalibard, Jean
    Zwerger, Wilhelm
    [J]. REVIEWS OF MODERN PHYSICS, 2008, 80 (03) : 885 - 964
  • [6] Bloch I, 2012, NAT PHYS, V8, P267, DOI [10.1038/nphys2259, 10.1038/NPHYS2259]
  • [7] LARGE-SIZE CRITICAL-BEHAVIOR OF INFINITELY COORDINATED SYSTEMS
    BOTET, R
    JULLIEN, R
    [J]. PHYSICAL REVIEW B, 1983, 28 (07): : 3955 - 3967
  • [8] Optimal Control at the Quantum Speed Limit
    Caneva, T.
    Murphy, M.
    Calarco, T.
    Fazio, R.
    Montangero, S.
    Giovannetti, V.
    Santoro, G. E.
    [J]. PHYSICAL REVIEW LETTERS, 2009, 103 (24)
  • [9] Chopped random-basis quantum optimization
    Caneva, Tommaso
    Calarco, Tommaso
    Montangero, Simone
    [J]. PHYSICAL REVIEW A, 2011, 84 (02):
  • [10] Speeding up critical system dynamics through optimized evolution
    Caneva, Tommaso
    Calarco, Tommaso
    Fazio, Rosario
    Santoro, Giuseppe E.
    Montangero, Simone
    [J]. PHYSICAL REVIEW A, 2011, 84 (01):