Complexity of controlling quantum many-body dynamics

被引:29
作者
Caneva, T. [1 ,2 ]
Silva, A. [3 ,4 ]
Fazio, R. [5 ,6 ]
Lloyd, S. [7 ]
Calarco, T. [1 ]
Montangero, S. [1 ]
机构
[1] Univ Ulm, Inst Quanteninformationsverarbeitung, D-89069 Ulm, Germany
[2] ICFO, Inst Ciencies Foton, Castelldefels 08860, Barcelona, Spain
[3] SISSA, Int Sch Adv Studies, I-34136 Trieste, Italy
[4] Abdus Salam Int Ctr Theoret Phys, I-34100 Trieste, Italy
[5] Scuola Normale Super Pisa, NEST, I-56126 Pisa, Italy
[6] CNR, Ist Nanosci, I-56126 Pisa, Italy
[7] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
来源
PHYSICAL REVIEW A | 2014年 / 89卷 / 04期
基金
美国国家科学基金会;
关键词
PHYSICS;
D O I
10.1103/PhysRevA.89.042322
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We demonstrate that arbitrary time evolutions of many-body quantum systems can be reversed even in cases when only part of the Hamiltonian can be controlled. The reversed dynamics obtained via optimal controlcontrary to standard time-reversal procedures-is extremely robust to external sources of noise. We provide a lower bound on the control complexity of a many-body quantum dynamics in terms of the dimension of the manifold supporting it, elucidating the role played by integrability in this context.
引用
收藏
页数:5
相关论文
共 27 条
[1]  
[Anonymous], 1989, ADV STUD PURE MATH, DOI DOI 10.2969/ASPM/01910641
[2]  
[Anonymous], 1988, INT J MOD PHYS A, V3, P743
[3]   Strong and Weak Thermalization of Infinite Nonintegrable Quantum Systems [J].
Banuls, M. C. ;
Cirac, J. I. ;
Hastings, M. B. .
PHYSICAL REVIEW LETTERS, 2011, 106 (05)
[4]  
Bason MG, 2012, NAT PHYS, V8, P147, DOI [10.1038/NPHYS2170, 10.1038/nphys2170]
[5]   Many-body physics with ultracold gases [J].
Bloch, Immanuel ;
Dalibard, Jean ;
Zwerger, Wilhelm .
REVIEWS OF MODERN PHYSICS, 2008, 80 (03) :885-964
[6]  
Bloch I, 2012, NAT PHYS, V8, P267, DOI [10.1038/nphys2259, 10.1038/NPHYS2259]
[7]   LARGE-SIZE CRITICAL-BEHAVIOR OF INFINITELY COORDINATED SYSTEMS [J].
BOTET, R ;
JULLIEN, R .
PHYSICAL REVIEW B, 1983, 28 (07) :3955-3967
[8]   Optimal Control at the Quantum Speed Limit [J].
Caneva, T. ;
Murphy, M. ;
Calarco, T. ;
Fazio, R. ;
Montangero, S. ;
Giovannetti, V. ;
Santoro, G. E. .
PHYSICAL REVIEW LETTERS, 2009, 103 (24)
[9]   Chopped random-basis quantum optimization [J].
Caneva, Tommaso ;
Calarco, Tommaso ;
Montangero, Simone .
PHYSICAL REVIEW A, 2011, 84 (02)
[10]   Speeding up critical system dynamics through optimized evolution [J].
Caneva, Tommaso ;
Calarco, Tommaso ;
Fazio, Rosario ;
Santoro, Giuseppe E. ;
Montangero, Simone .
PHYSICAL REVIEW A, 2011, 84 (01)