A Clustering Approach to Learning Sparsely Used Overcomplete Dictionaries

被引:17
作者
Agarwal, Alekh [1 ]
Anandkumar, Animashree [2 ]
Netrapalli, Praneeth [3 ]
机构
[1] Microsoft Res, New York, NY 10011 USA
[2] Univ Calif Irvine, Ctr Pervas Commun & Comp, Elect Engn & Comp Sci Dept, Irvine, CA 92697 USA
[3] Microsoft Res, Bengaluru 10011, India
关键词
Dictionary learning; sparse coding; overcomplete dictionaries; incoherence; lasso; SAMPLE COMPLEXITY;
D O I
10.1109/TIT.2016.2614684
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider the problem of learning overcomplete dictionaries in the context of sparse coding, where each sample selects a sparse subset of dictionary elements. Our main result is a strategy to approximately recover the unknown dictionary using an efficient algorithm. Our algorithm is a clustering-style procedure, where each cluster is used to estimate a dictionary element. The resulting solution can often be further cleaned up to obtain a high accuracy estimate, and we provide one simple scenario where l(1)-regularized regression can be used for such a second stage.
引用
收藏
页码:575 / 592
页数:18
相关论文
共 55 条
  • [1] Agarwal A., 2013, Learning sparsely used overcomplete dictionaries via alternating minimization
  • [2] Anandkumar A., 2013, WHEN ARE OVERCOMPLET
  • [3] Anandkumar A., 2012, LEARNING TOPIC MODEL
  • [4] Anandkumar A., 2015, C LEARNING THEORY, P36
  • [5] Anandkumar A., 2012, ADV NEURAL INFORM PR, V25
  • [6] Anandkumar A., 2012, TENSOR DECOMPOSITION
  • [7] Anandkumar A., 2014, ABS14111488 CORR, V17
  • [8] Anandkumar A., 2015, LEARNING MIXED MEMBE
  • [9] Anandkumar A, 2014, J MACH LEARN RES, V15, P2239
  • [10] Anandkumar Animashree, 2013, Proceedings of Machine Learning Research, P249