Nonlinear silicon nitride waveguides based on a PECVD deposition platform

被引:52
作者
Wang, Linghua [1 ]
Xie, Weiqiang [2 ]
Van Thourhout, Dries [2 ]
Zhang, Yazhen [1 ]
Yu, Hui [3 ]
Wang, Shaohao [1 ]
机构
[1] Fuzhou Univ, Coll Phys & Informat Engn, Fuzhou 350116, Fujian, Peoples R China
[2] Ghent Univ IMEC, Dept Informat Technol, Photon Res Grp, B-9000 Ghent, Belgium
[3] Zhejiang Univ, Dept Informat Sci & Elect Engn, Hangzhou 310027, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
HIGH-CONFINEMENT; SI3N4; FILM; FABRICATION; GENERATION; PHOTONICS; OPTICS;
D O I
10.1364/OE.26.009645
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this work, we present a nonlinear silicon nitride waveguide. These waveguide are fabricated by readily available PECVD, conventional contact UV-lithography and high-temperature annealing techniques, thus dramatically reducing the processing complexity and cost. By patterning the waveguide structures firstly and then carrying out a high-temperature annealing process, not only sufficient waveguide thickness can be achieved, which gives more freedom to waveguide dispersion control, but also the material absorption loss in the waveguides be greatly reduced. The linear optical loss of the fabricated waveguide with a cross-section of 2.0 x 0.58 mu m(2) was measured to be as low as 0.58 dB/cm. The same loss level is demonstrated over a broad wavelength range from 1500 nm to 1630 nm. Moreover, the nonlinear refractive index of the waveguide was determined to be similar to 6.94 x 10(-19) m(2)/W, indicating that comparable nonlinear performance with their LPCVD counterparts is expected. These silicon nitride waveguides based on a PECVD deposition platform can be useful for the development of more complicated on-chip nonlinear optical devices or circuits. (C) 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:9645 / 9654
页数:10
相关论文
共 30 条
[11]   Linear and nonlinear characterization of low-stress high-confinement silicon-rich nitride waveguides [J].
Kruckel, Clemens J. ;
Fulop, Attila ;
Klintberg, Thomas ;
Bengtsson, Jorgen ;
Andrekson, Peter A. ;
Torres-Company, Victor .
OPTICS EXPRESS, 2015, 23 (20) :25827-25837
[12]   Si-rich Silicon Nitride for Nonlinear Signal Processing Applications [J].
Lacava, Cosimo ;
Stankovic, Stevan ;
Khokhar, Ali Z. ;
Bucio, T. Dominguez ;
Gardes, F. Y. ;
Reed, Graham T. ;
Richardson, David J. ;
Petropoulos, Periklis .
SCIENTIFIC REPORTS, 2017, 7
[13]   CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects [J].
Levy, Jacob S. ;
Gondarenko, Alexander ;
Foster, Mark A. ;
Turner-Foster, Amy C. ;
Gaeta, Alexander L. ;
Lipson, Michal .
NATURE PHOTONICS, 2010, 4 (01) :37-40
[14]   Si-rich SiNx based Kerr switch enables optical data conversion up to 12 Gbit/s [J].
Lin, Gong-Ru ;
Su, Sheng-Pin ;
Wu, Chung-Lun ;
Lin, Yung-Hsiang ;
Huang, Bo-Ji ;
Wang, Huai-Yung ;
Tsai, Cheng-Ting ;
Wu, Chih-, I ;
Chi, Yu-Chieh .
SCIENTIFIC REPORTS, 2015, 5
[15]   Octave-spanning supercontinuum generation in a silicon-rich nitride waveguide [J].
Liu, Xing ;
Pu, Minhao ;
Zhou, Binbin ;
Krusckel, Clemens J. ;
Fulop, Attila ;
Torres-Company, Victor ;
Bache, Morten .
OPTICS LETTERS, 2016, 41 (12) :2719-2722
[16]   Overcoming Si3N4 film stress limitations for high quality factor ring resonators [J].
Luke, Kevin ;
Dutt, Avik ;
Poitras, Carl B. ;
Lipson, Michal .
OPTICS EXPRESS, 2013, 21 (19) :22829-22833
[17]   PREPARATION, CHARACTERIZATION AND APPLICATIONS OF SILICON-NITRIDE THIN-FILMS [J].
MOROSANU, CE .
THIN SOLID FILMS, 1980, 65 (02) :171-208
[18]  
Moss DJ, 2013, NAT PHOTONICS, V7, P597, DOI [10.1038/NPHOTON.2013.183, 10.1038/nphoton.2013.183]
[19]   Third-harmonic UV generation in silicon nitride nanostructures [J].
Ning, Tingyin ;
Hyvarinen, Outi ;
Pietarinen, Henna ;
Kaplas, Tommi ;
Kauranen, Martti ;
Genty, Goery .
OPTICS EXPRESS, 2013, 21 (02) :2012-2017
[20]   Strong second-harmonic generation in silicon nitride films [J].
Ning, Tingyin ;
Pietarinen, Henna ;
Hyvarinen, Outi ;
Simonen, Janne ;
Genty, Goery ;
Kauranen, Martti .
APPLIED PHYSICS LETTERS, 2012, 100 (16)