A note on quasi-copulas and signed measures

被引:7
作者
Fernandez-Sanchez, Juan [1 ]
Ubeda-Flores, Manuel [2 ]
机构
[1] Univ Almeria, Grp Invest Anal Matemat, Almeria 04120, Spain
[2] Univ Almeria, Dept Matemat, Almeria 04120, Spain
关键词
Copula; Quasi-copula; Self-affinity; Stochastic signed measure;
D O I
10.1016/j.fss.2013.04.016
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this note we provide two alternative proofs to that given in Nelsen et al. [Quasi-copulas and signed measures, Fuzzy Sets Syst. 161 (2010) 2328-2336] of the fact that the best possible lower bound for the set of n-quasi-copulas does not induce a stochastic measure on [0, 1](n) for n >= 3: firstly, by focusing on its mass distribution, and secondly, by using concepts of self-affinity. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:109 / 112
页数:4
相关论文
共 19 条
[1]   ON THE CHARACTERIZATION OF A CLASS OF BINARY OPERATIONS ON DISTRIBUTION-FUNCTIONS [J].
ALSINA, C ;
NELSEN, RB ;
SCHWEIZER, B .
STATISTICS & PROBABILITY LETTERS, 1993, 17 (02) :85-89
[2]  
[Anonymous], 2004, Wiley Finance Series
[3]  
[Anonymous], 1959, FONCTIONS REPARTITIO
[4]  
[Anonymous], ENCYCLOP MATH APPL
[5]  
[Anonymous], 2006, An introduction to copulas
[6]  
Beliakov G., 2007, Aggregation Functions: A Guide for Practitioners, DOI DOI 10.1007/978-3-540-73721-6
[7]  
Cuculescu I., 2001, REV ROUMAINE MATH PU, V46, P731
[8]   Bivariate quasi-copulas and doubly stochastic signed measures [J].
Fernandez-Sanchez, Juan ;
Rodriguez-Lallena, Jose Antonio ;
Ubeda-Flores, Manuel .
FUZZY SETS AND SYSTEMS, 2011, 168 (01) :81-88
[9]   A characterization of quasi-copulas [J].
Genest, C ;
Molina, JJQ ;
Lallena, JAR ;
Sempi, C .
JOURNAL OF MULTIVARIATE ANALYSIS, 1999, 69 (02) :193-205
[10]  
Halmos PR., 1974, Measure Theory