A SHARP ISOPERIMETRIC PROPERTY OF THE RENORMALIZED AREA OF A MINIMAL SURFACE IN HYPERBOLIC SPACE

被引:3
作者
Bernstein, Jacob [1 ]
机构
[1] Johns Hopkins Univ, Dept Math, 3400 N Charles St, Baltimore, MD 21218 USA
关键词
INEQUALITY; BOUNDARY; GROWTH; FLOW;
D O I
10.1090/proc/15960
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove an inequality bounding the renormalized area of a complete minimal surface in hyperbolic space in terms of the conformal length of its ideal boundary.
引用
收藏
页码:4487 / 4502
页数:16
相关论文
共 20 条
[1]   Renormalized Area and Properly Embedded Minimal Surfaces in Hyperbolic 3-Manifolds [J].
Alexakis, Spyridon ;
Mazzeo, Rafe .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2010, 297 (03) :621-651
[2]  
Alexakis S, 2015, J DIFFER GEOM, V101, P369
[3]  
Bernstein J., 2019, PREPRINT
[4]   Relative expander entropy in the presence of a two-sided obstacle and applications [J].
Bernstein, Jacob ;
Wang, Lu .
ADVANCES IN MATHEMATICS, 2022, 399
[5]   Colding Minicozzi entropy in hyperbolic space [J].
Bernstein, Jacob .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2021, 210
[6]  
Bryant R. L., 1988, P S PURE MATH, V48, P227
[7]  
Chen Q, 1999, OSAKA J MATH, V36, P397
[8]   THE SHARP ISOPERIMETRIC INEQUALITY FOR MINIMAL-SURFACES WITH RADIALLY CONNECTED BOUNDARY IN HYPERBOLIC SPACE [J].
CHOE, JY ;
GULLIVER, R .
INVENTIONES MATHEMATICAE, 1992, 109 (03) :495-503
[9]   Generic mean curvature flow I; generic singularities [J].
Colding, Tobias H. ;
Minicozzi, William P., II .
ANNALS OF MATHEMATICS, 2012, 175 (02) :755-833
[10]   MAXIMUM PRINCIPLE FOR PARABOLIC INEQUALITIES AND THE HEAT-FLOW ON OPEN MANIFOLDS [J].
DODZIUK, J .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1983, 32 (05) :703-716