Lie groups with flat Gauduchon connections

被引:16
|
作者
Vezzoni, Luigi [1 ]
Yang, Bo [2 ]
Zheng, Fangyang [3 ]
机构
[1] Univ Torino, Dipartimento Matemat G Peano, Via Carlo Alberto 10, I-10123 Turin, Italy
[2] Xiamen Univ, Sch Math Sci, Xiamen 361005, Fujian, Peoples R China
[3] Ohio State Univ, Dept Math, 231 West 18th Ave, Columbus, OH 43210 USA
关键词
Hermitian manifolds; Lie groups; left-invariant metrics; COMPLEX STRUCTURES;
D O I
10.1007/s00209-019-02232-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We pursue the research line proposed in Yang and Zheng (Acta. Math. Sinica (English Series), 34(8):1259-1268, 2018) about the classification of Hermitian manifolds whose s-Gauduchon connection backward difference s=(1-s2) backward difference c+s2 backward difference b is flat, where s is an element of R and backward difference c and backward difference b are the Chern and the Bismut connections, respectively. We focus on Lie groups equipped with a left invariant Hermitian structure. Such spaces provide an important class of Hermitian manifolds in various contexts and are often a valuable vehicle for testing new phenomena in complex and Hermitian geometry. More precisely, we consider a connected 2n-dimensional Lie group G equipped with a left-invariant complex structure J and a left-invariant compatible metric g and we assume that its connection backward difference s is flat. Our main result states that if either n=2 or there exits a backward difference s-parallel left invariant frame on G, then g must be Kahler. This result demonstrates rigidity properties of some complete Hermitian manifolds with backward difference s-flat Hermitian metrics.
引用
收藏
页码:597 / 608
页数:12
相关论文
共 50 条
  • [21] Lie groups for atomic shells
    Judd, BR
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1997, 285 (1-2): : 1 - 76
  • [22] Integral control on Lie groups
    Zhang, Zhifei
    Sarlette, Alain
    Ling, Zhihao
    SYSTEMS & CONTROL LETTERS, 2015, 80 : 9 - 15
  • [23] The Newton iteration on Lie groups
    Owren, B
    Welfert, B
    BIT, 2000, 40 (01): : 121 - 145
  • [24] On framed simple Lie groups
    Minami, Haruo
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2016, 68 (03) : 1219 - 1229
  • [25] Harmonic interpolation and Lie groups
    Steeb, WH
    Hardy, A
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2004, 43 (05) : 1261 - 1266
  • [26] Elliptic operators on Lie groups
    TerElst, AFM
    Robinson, DW
    ACTA APPLICANDAE MATHEMATICAE, 1996, 44 (1-2) : 133 - 150
  • [27] Generic subgroups of Lie groups
    Winkelmann, J
    TOPOLOGY, 2002, 41 (01) : 163 - 181
  • [28] A note on the geometry of Lie groups
    Coeken, A. Ceylan
    Ciftci, Uenver
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (07) : 2013 - 2016
  • [29] Einstein nilpotent Lie groups
    Conti, Diego
    Rossi, Federico A.
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2019, 223 (03) : 976 - 997
  • [30] The Newton Iteration on Lie Groups
    B. Owren
    B. Welfert
    BIT Numerical Mathematics, 2000, 40 : 121 - 145