Lie groups with flat Gauduchon connections

被引:16
|
作者
Vezzoni, Luigi [1 ]
Yang, Bo [2 ]
Zheng, Fangyang [3 ]
机构
[1] Univ Torino, Dipartimento Matemat G Peano, Via Carlo Alberto 10, I-10123 Turin, Italy
[2] Xiamen Univ, Sch Math Sci, Xiamen 361005, Fujian, Peoples R China
[3] Ohio State Univ, Dept Math, 231 West 18th Ave, Columbus, OH 43210 USA
关键词
Hermitian manifolds; Lie groups; left-invariant metrics; COMPLEX STRUCTURES;
D O I
10.1007/s00209-019-02232-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We pursue the research line proposed in Yang and Zheng (Acta. Math. Sinica (English Series), 34(8):1259-1268, 2018) about the classification of Hermitian manifolds whose s-Gauduchon connection backward difference s=(1-s2) backward difference c+s2 backward difference b is flat, where s is an element of R and backward difference c and backward difference b are the Chern and the Bismut connections, respectively. We focus on Lie groups equipped with a left invariant Hermitian structure. Such spaces provide an important class of Hermitian manifolds in various contexts and are often a valuable vehicle for testing new phenomena in complex and Hermitian geometry. More precisely, we consider a connected 2n-dimensional Lie group G equipped with a left-invariant complex structure J and a left-invariant compatible metric g and we assume that its connection backward difference s is flat. Our main result states that if either n=2 or there exits a backward difference s-parallel left invariant frame on G, then g must be Kahler. This result demonstrates rigidity properties of some complete Hermitian manifolds with backward difference s-flat Hermitian metrics.
引用
收藏
页码:597 / 608
页数:12
相关论文
共 50 条
  • [1] Lie groups with flat Gauduchon connections
    Luigi Vezzoni
    Bo Yang
    Fangyang Zheng
    Mathematische Zeitschrift, 2019, 293 : 597 - 608
  • [2] On Compact Hermitian Manifolds with Flat Gauduchon Connections
    Bo YANG
    Fang Yang ZHENG
    Acta Mathematica Sinica,English Series, 2018, (08) : 1259 - 1268
  • [3] On Compact Hermitian Manifolds with Flat Gauduchon Connections
    Bo Yang
    Fang Yang Zheng
    Acta Mathematica Sinica, English Series, 2018, 34 : 1259 - 1268
  • [4] On Compact Hermitian Manifolds with Flat Gauduchon Connections
    Yang, Bo
    Zheng, Fang Yang
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2018, 34 (08) : 1259 - 1268
  • [5] On Gauduchon connections with Kahler-like curvature
    Angella, Daniele
    Otal, Antonio
    Ugarte, Luis
    Villacampa, Raquel
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2022, 30 (05) : 961 - 1006
  • [6] Left-Invariant Lorentzian Flat Metrics on Lie Groups
    Ben Haddou, Malika Ait
    Boucetta, Mohamed
    Lebzioui, Hicham
    JOURNAL OF LIE THEORY, 2012, 22 (01) : 269 - 289
  • [7] LEFT-INVARIANT HERMITIAN CONNECTIONS ON LIE GROUPS WITH ALMOST HERMITIAN STRUCTURES
    Pham, David n.
    Ye, Fei
    GLASNIK MATEMATICKI, 2024, 59 (02) : 417 - 460
  • [8] Lie groups and lie algebras in robotics
    Selig, JM
    COMPUTATIONAL NONCOMMUTATIVE ALGEBRA AND APPLICATIONS, 2004, 136 : 101 - 125
  • [9] Actions of Lie Groups and Lie Algebras on Manifolds
    Hirsch, M. W.
    CELEBRATION OF THE MATHEMATICAL LEGACY OF RAOUL BOTT, 2010, 50 : 69 - 78
  • [10] Four-dimensional Lorentzian Lie groups
    Calvaruso, Giovanni
    Zaeim, Amirhesam
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2013, 31 (04) : 496 - 509