Echinacea polysaccharide attenuates lipopolysaccharide-induced acute kidney injury via inhibiting inflammation, oxidative stress and the MAPK signaling pathway

被引:30
|
作者
Shi, Qiumei [1 ]
Lang, Wuying [2 ]
Wang, Shiyong [3 ]
Li, Guangyu [4 ]
Bai, Xue [4 ]
Yan, Xijun [4 ]
Zhang, Haihua [1 ]
机构
[1] Hebei Normal Univ Sci & Technol, Coll Anim Sci & Technol, 360 West Sect,Hebei Ave, Qinhuangdao 066004, Hebei, Peoples R China
[2] Jilin Agr Univ, Coll Anim Sci & Technol, Changchun 130118, Jilin, Peoples R China
[3] Guizhou Univ Tradit Chinese Med, Inst Lab Anim Sci, Guiyang 550025, Guizhou, Peoples R China
[4] Chinese Acad Agr Sci, Inst Special Anim & Plant Sci, Changchun 130112, Jilin, Peoples R China
基金
中国国家自然科学基金;
关键词
AKI; EP; inflammation; OS; MAPK signaling pathway; ACUTE RENAL INJURY; PURPUREA; PROTECTS; CELLS; ANGUSTIFOLIA; APOPTOSIS; RATS;
D O I
10.3892/ijmm.2020.4769
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Acute kidney injury (AKI) is often accompanied by inflammation. Echinacea polysaccharide (EP) is an active ingredient that has been demonstrated to possess anti-oxidative, anti-inflammatory, antimicrobial and immunomodulatory functions. However, the role of EP in AKI has not been examined. The present study investigated the effects of EP on lipopolysaccharide (LPS)-induced AKI. Western blotting, immunohistochemistry and immunofluorescence analyses were performed to detect protein expression levels. Administration of EP significantly attenuated LPS-induced renal tissue injury, along with a decrease in blood urea nitrogen and creatinine levels. EP decreased the levels of inducible nitric oxide synthase and cyclo-oxygenase-2 in LPS-treated mice. Furthermore, LPS-induced inflammation was inhibited by EP in renal tissues and HBZY-1 cells, as demonstrated by the downregulation of tumor necrosis factor-alpha, interleukin (IL)-1 beta, IL-6, nitric oxide and prostaglandin E2 levels. Similarly, EP administration decreased oxidative stress (OS) via decreasing reactive oxygen species, malondialdehyde and oxidized glutathione levels, and increasing superoxide dismutase, catalase, glutathione reductase and reduced glutathione activity. Notably, EP induced a marked decrease in the expression levels of phospho-extracellular signal-regulated protein kinase (p-ERK), phospho-c-Jun N-terminal kinase (p-JNK) and p-p38 in vivo and in vitro. In addition, in LPS-treated HBZY-1 cells, EP enhanced cell viability and inhibited nuclear translocation of p-ERK, p-JNK and p-p38. Overall, the present findings demonstrated that EP alleviated LPS-induced AKI via the suppression of inflammation, OS and the mitogen-activated protein kinase signaling pathway, providing insight into potential avenues for the treatment of AKI.
引用
收藏
页码:243 / 255
页数:13
相关论文
共 50 条
  • [1] Dihydroartemisinin attenuates lipopolysaccharide-induced acute kidney injury by inhibiting inflammation and oxidative stress
    Liu, Xinhui
    Lu, Jiandong
    Liao, Yijiao
    Liu, Siqi
    Chen, Yijun
    He, Riming
    Men, Ling
    Lu, Chunjian
    Chen, Zhihong
    Li, Shunmin
    Xiong, Guoliang
    Yang, Shudong
    BIOMEDICINE & PHARMACOTHERAPY, 2019, 117
  • [2] Auricularia auricular-judae polysaccharide attenuates lipopolysaccharide-induced acute lung injury by inhibiting oxidative stress and inflammation
    Li Zhuan-Yun
    Yao Xue-Ping
    Liu Bin
    Reheman, Ha Nizaier
    Gao Yang
    Sun Zhan
    Ma Qi
    BIOMEDICAL REPORTS, 2015, 3 (04) : 478 - 482
  • [3] Dimethyl fumarate attenuates lipopolysaccharide-induced acute lung injury by inhibiting inflammation and oxidative stress
    Cui, X-F
    Lin, P.
    Yu, J.
    Liu, L.
    Wang, Z-Y
    Tang, X-J
    JOURNAL OF BIOLOGICAL REGULATORS AND HOMEOSTATIC AGENTS, 2021, 35 (04): : 1389 - 1395
  • [4] Eupatilin Ameliorates Lipopolysaccharide-Induced Acute Kidney Injury by Inhibiting Inflammation, Oxidative Stress, and Apoptosis in Mice
    Kim, Kiryeong
    Hong, Hyo-Lim
    Kim, Gyun Moo
    Leem, Jaechan
    Kwon, Hyun Hee
    CURRENT ISSUES IN MOLECULAR BIOLOGY, 2023, 45 (09) : 7027 - 7042
  • [5] Dexmedetomidine ameliorates lipopolysaccharide-induced acute kidney injury in rats by inhibiting inflammation and oxidative stress via the GSK-3β/Nrf2 signaling pathway
    Feng, Xiujing
    Guan, Wei
    Zhao, Yuan
    Wang, Chaoran
    Song, Manyu
    Yao, Yujie
    Yang, Tianyuan
    Fan, Honggang
    JOURNAL OF CELLULAR PHYSIOLOGY, 2019, 234 (10) : 18994 - 19009
  • [6] Glabridin attenuates lipopolysaccharide-induced acute lung injury by inhibiting p38MAPK/ERK signaling pathway
    Zhang, Li-peng
    Zhao, Yan
    Liu, Guo-juan
    Yang, Da-gang
    Dong, Yi-huan
    Zhou, Li-hua
    ONCOTARGET, 2017, 8 (12) : 18935 - 18942
  • [7] Eupatilin Alleviates Lipopolysaccharide-Induced Acute Lung Injury by Inhibiting Inflammation and Oxidative Stress
    Liu, Haiying
    Hao, Jindou
    Wu, Chunyuan
    Liu, Guosheng
    Wang, Xing
    Yu, Jieming
    Liu, Yu
    Zhao, Hongxia
    MEDICAL SCIENCE MONITOR, 2019, 25 : 8289 - 8296
  • [8] β-Caryophyllene attenuates lipopolysaccharide-induced acute lung injury via inhibition of the MAPK signalling pathway
    Zhang, Yong
    Zhang, Haibo
    Li, Yan
    Wang, Muqun
    Qian, Feng
    JOURNAL OF PHARMACY AND PHARMACOLOGY, 2021, 73 (10) : 1319 - 1329
  • [9] Epicatechin alleviates inflammation in lipopolysaccharide-induced acute lung injury in mice by inhibiting the p38 MAPK signaling pathway
    Xing, Jing
    Yu, Zhenlong
    Zhang, Xiangyu
    Li, Wenyang
    Gao, Dongna
    Wang, Jian
    Ma, Xiaochi
    Nie, Xinshi
    Wang, Wei
    INTERNATIONAL IMMUNOPHARMACOLOGY, 2019, 66 : 146 - 153
  • [10] Kaempferol attenuates inflammation in lipopolysaccharide-induced gallbladder epithelial cells by inhibiting the MAPK/NF-κB signaling pathway
    Wu, Hai-tao
    Lin, Xin-xing
    Yang, Xiao-lei
    Ding, Yong
    Wang, Jia-liang
    Liu, Chen-lu
    Yu, Wei-zhou
    CHEMICAL BIOLOGY & DRUG DESIGN, 2024, 103 (04)