Essential norms of composition operators and Aleksandrov measures

被引:42
作者
Cima, JA [1 ]
Matheson, AL [1 ]
机构
[1] LAMAR UNIV, BEAUMONT, TX 77710 USA
关键词
D O I
10.2140/pjm.1997.179.59
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The essential norm of a composition operator on H-2 is calculated in terms of the Aleksandrov measures of the inducing holomorphic map. The argument provides a purely function-theoretic proof of the equivalence of Sarason's compactness condition for composition operators on L-1 and Shapiro's compactness condition for composition operators on Hardy spaces. An application is given relating the essential norm to angular derivatives.
引用
收藏
页码:59 / 64
页数:6
相关论文
共 13 条
[1]  
Ahlfors L. V., 1973, McGraw-Hill Series in Higher Mathematics
[2]  
Aleksandrov A.B., 1987, IZV ACAD NAUK ARM SS, V22, P490
[3]  
COWEN CC, 1983, J OPERAT THEOR, V9, P77
[4]  
COWEN CC, 1978, J LOND MATH SOC, V26, P271
[5]   On inequalities in the theory of functions [J].
Littlewood, JE .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1925, 23 :481-519
[6]   PEAK SETS FOR LIPSCHITZ FUNCTIONS [J].
NOVINGER, WP ;
OBERLIN, DM .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1978, 68 (01) :37-43
[7]  
Sarason D., 1994, U ARKANSAS LECT NOTE, V10
[8]  
SARASON D, 1990, ANAL PARTIAL DIFFERE
[9]   COMPACT, NUCLEAR, AND HILBERT-SCHMIDT COMPOSITION OPERATORS ON H2 [J].
SHAPIRO, JH ;
TAYLOR, PD .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1973, 23 (06) :471-496
[10]   COMPACT COMPOSITION OPERATORS ON L1 [J].
SHAPIRO, JH ;
SUNDBERG, C .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 108 (02) :443-449