Nonlinear Kalman filtering using fuzzy local linear models

被引:0
作者
McGinnity, S
Irwin, G
机构
来源
PROCEEDINGS OF THE 1997 AMERICAN CONTROL CONFERENCE, VOLS 1-6 | 1997年
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A local linear modelling based approach to nonlinear state estimation is introduced. The local models are defined using the Sugeno fuzzy inference framework and constructed using neurofuzzy modelling techniques. Two new fuzzy Kalman filters, which do not require further linearisation nor analytical system equations, are derived. Simulation results presented for a highly nonlinear target tracking problem suggest potential improvements when compared with conventional extended Kalman filtering.
引用
收藏
页码:3299 / 3300
页数:2
相关论文
empty
未找到相关数据