Coordination shells and coordination numbers of the vertex graph of the Ammann-Beenker tiling

被引:3
|
作者
Shutov, Anton [1 ]
Maleev, Andrey [1 ]
机构
[1] Vladimir State Univ, Gorky Str 87, Vladimir 600000, Russia
来源
ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES | 2019年 / 75卷
基金
俄罗斯基础研究基金会;
关键词
vertex graph of the Ammann-Beenker tiling; coordination sequences; coordination shells; growth form; BY-LAYER GROWTH; CUBIC LATTICE COMPLEXES; EXISTENCE CONDITIONS; SEQUENCES; PARAMETERIZATION; CRYSTAL;
D O I
10.1107/S2053273319008179
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The vertex graph of the Ammann-Beenker tiling is a well-known quasiperiodic graph with an eightfold rotational symmetry. The coordination sequence and coordination shells of this graph are studied. It is proved that there exists a limit growth form for the vertex graph of the Ammann-Beenker tiling. This growth form is an explicitly calculated regular octagon. Moreover, an asymptotic formula for the coordination numbers of the vertex graph of the Ammann-Beenker tiling is also proved.
引用
收藏
页码:746 / 757
页数:12
相关论文
共 16 条
  • [1] Substitutions of vertex configuration of Ammann-Beenker tiling in framework of Ammann lines
    Ye, Jia-Rong
    Huang, Wei-Shen
    Fu, Xiu-Jun
    CHINESE PHYSICS B, 2022, 31 (08)
  • [2] Vertex configuration rules to grow an octagonal Ammann-Beenker tiling
    Cai, Cheng
    Liao, Longguang
    Fu, Xiujun
    PHYSICS LETTERS A, 2019, 383 (18) : 2213 - 2216
  • [3] Self-Similar Transformation and Vertex Configurations of the Octagonal Ammann-Beenker Tiling
    张红梅
    蔡程
    傅秀军
    Chinese Physics Letters, 2018, 35 (06) : 46 - 49
  • [4] Hyperuniform electron distributions on the Ammann-Beenker tiling
    Sakai, Shiro
    10TH INTERNATIONAL CONFERENCE ON APERIODIC CRYSTALS, APERIODIC 2022, 2023, 2461
  • [5] The symmetry structure of the Ammann-Beenker tiling class
    Hermisson, J
    GROUP 21 - PHYSICAL APPLICATIONS AND MATHEMATICAL ASPECTS OF GEOMETRY, GROUPS, AND ALGEBRA, VOLS 1 AND 2, 1997, : 977 - 981
  • [6] Self-Similar Transformation and Vertex Configurations of the Octagonal Ammann-Beenker Tiling
    Zhang, Hong-Mei
    Cai, Cheng
    Fu, Xiu-Jun
    CHINESE PHYSICS LETTERS, 2018, 35 (06)
  • [7] Coordination numbers of the vertex graph of a Penrose tiling
    Shutov, Anton
    Maleev, Andrey
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2018, 74 : 112 - 122
  • [8] Properties of the Ammann-Beenker Tiling and its Square Periodic Approximants
    Jagannathan, Anuradha
    Duneau, Michel
    ISRAEL JOURNAL OF CHEMISTRY, 2024, 64 (10-11)
  • [9] Layer-by-Layer Growth of Ammann-Beenker Graph
    Shutov, A. V.
    Maleev, A. V.
    CRYSTALLOGRAPHY REPORTS, 2019, 64 (06) : 851 - 856
  • [10] Substitutions of vertex configuration of Ammann–Beenker tiling in framework of Ammann lines
    叶家容
    黄伟深
    傅秀军
    ChinesePhysicsB, 2022, 31 (08) : 432 - 436