Electrochemical Fabrication and Characterization of Silicon Microwire Anodes for Li Ion Batteries

被引:19
|
作者
Noehren, Sandra [1 ]
Quiroga-Gonzalez, Enrique [2 ]
Carstensen, Juergen [1 ]
Foell, Helmut [1 ]
机构
[1] Univ Kiel, Inst Mat Sci, D-24143 Kiel, Germany
[2] Benemerita Univ Autonoma Puebla, Inst Phys, Puebla 72570, Mexico
关键词
P-TYPE SILICON; MACROPORE FORMATION; CYCLIC VOLTAMMETRY; LITHIUM; PERFORMANCE; ARRAYS;
D O I
10.1149/2.0111603jes
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
With a technique allowing for large-scale production, which is based on electrochemical etching, silicon microwire anodes for Li ion batteries anodes are produced. The wires exhibit high areal capacity due to their diameters in the micron-range, and high cycling stability due to the formation of a homogeneous solid electrolyte interface around each of them. This study summarizes the importance of the (exact) battery work parameters and their dependence on the wire dimensions. Furthermore, it compares two anode concepts in which the wires can be incorporated. FFT-impedance analysis shows the characteristic resistance changes under specific conditions, which relate directly to the processes in the wires during operation, what helps for their optimization. (C) The Author(s) 2015 Published by ECS. All rights reserved.
引用
收藏
页码:A373 / A379
页数:7
相关论文
共 50 条
  • [41] Electrochemical behavior of submicron Li2MoO3 as anodes in lithium-ion batteries
    Li, Dan
    He, Hongyan
    Wu, Ximin
    Li, Mingqi
    JOURNAL OF ALLOYS AND COMPOUNDS, 2016, 682 : 759 - 765
  • [42] Porous-Nickel-Scaffolded Tin-Antimony Anodes with Enhanced Electrochemical Properties for Li/Na-Ion Batteries
    Li, Jiachen
    Pu, Jun
    Liu, Zigiang
    Wang, Jian
    Wu, Wenlu
    Zhang, Huigang
    Ma, Haixia
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (30) : 25250 - 25256
  • [43] Cycling performance of density modulated multilayer silicon thin film anodes in Li-ion batteries
    Demirkan, M. T.
    Trahey, L.
    Karabacak, T.
    JOURNAL OF POWER SOURCES, 2015, 273 : 52 - 61
  • [44] Silicon carboxylate derived silicon oxycarbides as anodes for lithium ion batteries
    Tahir, M. S.
    Weinberger, M.
    Balasubramanian, P.
    Diemant, T.
    Behm, R. J.
    Linden, M.
    Wohlfahrt-Mehrens, M.
    JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (21) : 10190 - 10199
  • [45] Shedding X-ray Light on the Interfacial Electrochemistry of Silicon Anodes for Li-Ion Batteries
    Cao, Chuntian
    Shyam, Badri
    Wang, Jiajun
    Toney, Michael F.
    Steinruck, Hans-Georg
    ACCOUNTS OF CHEMICAL RESEARCH, 2019, 52 (09) : 2673 - 2683
  • [46] An electrochemical and structural investigation of silicon nanowires as negative electrode for Li-ion batteries
    Laik, Barbara
    Ung, Diane
    Caillard, Amael
    Cojocaru, Costel Sorin
    Pribat, Didier
    Pereira-Ramos, Jean-Pierre
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2010, 14 (10) : 1835 - 1839
  • [47] Cascading use of barley husk ash to produce silicon for composite anodes of Li-ion batteries
    Kalidas, Nathiya
    Riikonen, Joakim
    Xu, Wujun
    Lahtinen, Katja
    Kallio, Tanja
    Lehto, Vesa Pekka
    MATERIALS CHEMISTRY AND PHYSICS, 2020, 245
  • [48] Moisture Adsorption Behavior in Anodes for Li-Ion Batteries
    Eser, Jochen C.
    Wirsching, Tobias
    Weidler, Peter G.
    Altvater, Andreas
    Boernhorst, Tobias
    Kumberg, Jana
    Schoene, Gerrit
    Mueller, Marcus
    Scharfer, Philip
    Schabel, Wilhelm
    ENERGY TECHNOLOGY, 2020, 8 (02)
  • [49] Anodes for Li-ion batteries based on titanium fluorides
    Astrova, Ekaterina V.
    Parfeneva, Alesya V.
    Li, Galina V.
    Ulin, Vladimir P.
    Yagovkina, Maria A.
    Nashchekin, Alexey V.
    Beregulin, Eugene V.
    Rumyantsev, Aleksander M.
    ENERGY STORAGE, 2024, 6 (02)
  • [50] Chemically Prelithiated Graphene for Anodes of Li-Ion Batteries
    Jang, Jaewon
    Ki, Hangil
    Kang, Yesol
    Son, Myungwoo
    Auxilia, Francis Malar
    Seo, Hun
    Kim, Il-Hwan
    Kim, Kwang-Heon
    Park, Ki-Hoon
    Kim, Yoongon
    Kim, Won Bae
    Ham, Moon-Ho
    Kim, In S.
    ENERGY & FUELS, 2020, 34 (10) : 13048 - 13055