Decompositions with Atoms and Molecules for Variable Exponent Triebel-Lizorkin-Morrey Spaces

被引:3
作者
Caetano, Antonio [1 ]
Kempka, Henning [2 ]
机构
[1] Univ Aveiro, Dept Math, Ctr R&D Math & Applicat, P-3810193 Aveiro, Portugal
[2] Univ Appl Sci Jena, Dept Fundamental Sci, PF 100314, D-07703 Jena, Germany
关键词
Variable exponents; Triebel– Lizorkin– Morrey spaces; Atomic characterization; Molecular characterization;
D O I
10.1007/s00365-020-09497-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We continue the study of the variable exponent Morreyfied Triebel-Lizorkin spaces introduced in a previous paper. Here we give characterizations by means of atoms and molecules. We also show that in some cases the number of zero moments needed for molecules, in order that an infinite linear combination of them (with coefficients in a natural sequence space) converges in the space of tempered distributions, is much smaller than what is usually required. We also establish a Sobolev type theorem for related sequence spaces, which might have independent interest.
引用
收藏
页码:201 / 234
页数:34
相关论文
共 17 条
[1]  
Almeida A, 2008, GEORGIAN MATH J, V15, P195
[2]   Variable Exponent Besov-Morrey Spaces [J].
Almeida, Alexandre ;
Caetano, Antonio .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2020, 26 (01)
[3]   On 2-microlocal spaces with all exponents variable [J].
Almeida, Alexandre ;
Caetano, Antonio .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 135 :97-119
[4]   Atomic and molecular decompositions in variable exponent 2-microlocal spaces and applications [J].
Almeida, Alexandre ;
Caetano, Antonio .
JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 270 (05) :1888-1921
[5]  
Caetanoa A., 2020, J. Math. Anal. Appl., V484
[6]  
CruzUribe DV, 2013, APPL NUMER HARMON AN, DOI 10.1007/978-3-0348-0548-3
[7]   Lebesgue and Sobolev Spaces with Variable Exponents [J].
Diening, Lars ;
Harjulehto, Petteri ;
Hasto, Peter ;
Ruzicka, Michael .
LEBESGUE AND SOBOLEV SPACES WITH VARIABLE EXPONENTS, 2011, 2017 :1-+
[8]  
Kempka H, 2010, FUNCT APPROX COMMENT, V43, P171
[9]  
KOVACIK O, 1991, CZECH MATH J, V41, P592
[10]   Generalized Morrey spaces and trace operator [J].
Nakamura, Shohei ;
Noi, Takahiro ;
Sawano, Yoshihiro .
SCIENCE CHINA-MATHEMATICS, 2016, 59 (02) :281-336