Offline digital twin synchronization using measurement data and machine learning methods

被引:4
|
作者
Schnuerer, Dominik [1 ]
Hammelmueller, Franz [1 ]
Holl, Helmut J. [2 ]
Kunze, Wolfgang [3 ]
机构
[1] Linz Ctr Mech GmbH, Altenberger Str 69, A-4040 Linz, Austria
[2] Johannes Kepler Univ Linz, Inst Tech Mech, Altenbergerstr 69, A-4040 Linz, Austria
[3] Salvagnini Maschinenbau GmbH, Dr Guido Salvagnini Str 1, A-4482 Ennsdorf, Austria
关键词
Digital twin; Machine learning; Automatic differentiation; Parameter identification; Compliances; SYSTEM-IDENTIFICATION;
D O I
10.1016/j.matpr.2022.02.566
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Digital Twins play an important role in modeling production processes to adapt parameters according to predicted situations. Panel bending machines from Salvagnini use this technology to ensure safe operating conditions and to guarantee accurate results for different settings, even with highly variable material properties. Due to constantly increasing accuracy requirements, digital twins have to increase accuracy on the one hand and adapt to new machine generations on the other hand. This work shows how machine learning tools can be used to synchronize digital twins accurately and efficiently with real world behavior by learning parameter values with measurement data while maintaining interpretable and robust analytical models. Copyright CO 2020 Elsevier Ltd. All rights reserved. Selection and peer-review under responsibility of the scientific committee of the 37th Danubia Adria Symposium on Advances in Experimental Mechanics.
引用
收藏
页码:2416 / 2420
页数:5
相关论文
共 50 条
  • [41] Feature investigation with Digital Twin for predictive maintenance following a machine learning approach
    Panagou, Sotirios
    Fruggiero, Fabio
    Lerra, Marida
    del Vecchio, Carmen
    Menchetti, Fernando
    Piedimonte, Luca
    Natale, Oreste Riccardo
    Passariello, Salvatore
    IFAC PAPERSONLINE, 2022, 55 (02): : 132 - 137
  • [42] Advanced digital twin framework for stealth dicing of ultra-thin memory devices using machine learning
    Chaudri, Amrita
    Foo, Alessandra
    Tsai, David
    Lim, Dao Kun
    Prabhala, Revathi
    Zhuang, Darren
    Vempaty, Venkata Rama Satya Pradeep
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2025, 185
  • [43] Digital twin framework for smart greenhouse management using next-gen mobile networks and machine learning
    Rahman, Hameedur
    Shah, Uzair Muzamil
    Riaz, Syed Morsleen
    Kifayat, Kashif
    Moqurrab, Syed Atif
    Yoo, Joon
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2024, 156 : 285 - 300
  • [44] Digital twin for oil pipeline risk estimation using prognostic and machine learning techniques
    Priyanka, E. B.
    Thangavel, S.
    Gao, Xiao-Zhi
    Sivakumar, N. S.
    JOURNAL OF INDUSTRIAL INFORMATION INTEGRATION, 2022, 26
  • [45] Machine-Learning-Driven Digital Twin for Lifecycle Management of Complex Equipment
    Ren, Zijie
    Wan, Jiafu
    Deng, Pan
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, 2022, 10 (01) : 9 - 22
  • [46] Applications of Data Analytics and Machine Learning for Digital Twin-based Precision Biodiversity: A Review
    Sharef, Nurfadhlina Mohd
    Nasharuddin, Nurul Amelina
    Mohamed, Raihani
    Zamani, Nabila Wardah
    Osman, Mohd Hafeez
    Yaakob, Razali
    2022 INTERNATIONAL CONFERENCE ON ADVANCED CREATIVE NETWORKS AND INTELLIGENT SYSTEMS, ICACNIS, 2022, : 74 - 80
  • [47] Data Synchronization in Vehicular Digital Twin Network: A Game Theoretic Approach
    Zheng, Jinkai
    Luan, Tom H.
    Zhang, Yao
    Li, Rui
    Hui, Yilong
    Gao, Longxiang
    Dong, Mianxiong
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2023, 22 (11) : 7635 - 7647
  • [48] Digital twin for autonomous collaborative robot by using synthetic data and reinforcement learning
    Kim, Dongjun
    Choi, Minho
    Um, Jumyung
    ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING, 2024, 85
  • [49] Accurate and Efficient Digital Twin Construction Using Concurrent End-to-End Synchronization and Multi-Attribute Data Resampling
    Jia, Pengyi
    Wang, Xianbin
    Shen, Xuemin
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (06) : 4857 - 4870
  • [50] Data Oriented Financial Analysis using Machine Learning Methods
    Altan, Cisem
    Kalayci, Sacide
    Koroglu, Bilge
    2020 5TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ENGINEERING (UBMK), 2020, : 37 - 41