Hierarchical Optimization of 3D Point Cloud Registration

被引:18
作者
Liu, Huikai [1 ,2 ]
Zhang, Yue [1 ,2 ]
Lei, Linjian [1 ,3 ]
Xie, Hui [1 ,2 ]
Li, Yan [1 ,2 ]
Sun, Shengli [1 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Tech Phys, Shanghai 200083, Peoples R China
[2] Univ Chinese Acad Sci, Sch Elect Elect & Commun Engn, Beijing 100049, Peoples R China
[3] ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China
关键词
3D point cloud registration; improved voxel filter; multi-scale voxelized GICP; OBJECT RECOGNITION; ALGORITHM; SCENES;
D O I
10.3390/s20236999
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Rigid registration of 3D point clouds is the key technology in robotics and computer vision. Most commonly, the iterative closest point (ICP) and its variants are employed for this task. These methods assume that the closest point is the corresponding point and lead to sensitivity to the outlier and initial pose, while they have poor computational efficiency due to the closest point computation. Most implementations of the ICP algorithm attempt to deal with this issue by modifying correspondence or adding coarse registration. However, this leads to sacrificing the accuracy rate or adding the algorithm complexity. This paper proposes a hierarchical optimization approach that includes improved voxel filter and Multi-Scale Voxelized Generalized-ICP (MVGICP) for 3D point cloud registration. By combining traditional voxel sampling with point density, the outlier filtering and downsample are successfully realized. Through multi-scale iteration and avoiding closest point computation, MVGICP solves the local minimum problem and optimizes the operation efficiency. The experimental results demonstrate that the proposed algorithm is superior to the current algorithms in terms of outlier filtering and registration performance.
引用
收藏
页码:1 / 20
页数:19
相关论文
共 50 条
  • [1] 3D POINT CLOUD REGISTRATION WITH SHAPE CONSTRAINT
    Agarwal, Swapna
    Bhowmick, Brojeshwar
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 2199 - 2203
  • [2] Robot Assisted 3D Point Cloud Object Registration
    Jerbic, Bojan
    Suligoj, Filip
    Svaco, Marko
    Sekoranja, Bojan
    25TH DAAAM INTERNATIONAL SYMPOSIUM ON INTELLIGENT MANUFACTURING AND AUTOMATION, 2014, 2015, 100 : 847 - 852
  • [3] A ROBUST ESTIMATION TECHNIQUE FOR 3D POINT CLOUD REGISTRATION
    Pankaj, Dhanya S.
    Nidamanuri, Rama Rao
    IMAGE ANALYSIS & STEREOLOGY, 2016, 35 (01) : 15 - 28
  • [4] Rigid pairwise 3D point cloud registration: A survey
    Lyu, Mengjin
    Yang, Jie
    Qi, Zhiquan
    Xu, Ruijie
    Liu, Jiabin
    PATTERN RECOGNITION, 2024, 151
  • [5] CorsNet: 3D Point Cloud Registration by Deep Neural Network
    Kurobe, Akiyoshi
    Sekikawa, Yusuke
    Ishikawa, Kohta
    Saito, Hideo
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2020, 5 (03): : 3960 - 3966
  • [6] A fast and robust local descriptor for 3D point cloud registration
    Yang, Jiaqi
    Cao, Zhiguo
    Zhang, Qian
    INFORMATION SCIENCES, 2016, 346 : 163 - 179
  • [7] Point-cloud Registration Using 3D Shape Contexts
    Price, Mathew
    Green, Jeremy
    Dickens, John
    2012 5TH ROBOTICS AND MECHATRONICS CONFERENCE OF SOUTH AFRICA (ROBOMECH), 2012,
  • [8] A Maximum Feasible Subsystem for Globally Optimal 3D Point Cloud Registration
    Yu, Chanki
    Ju, Da Young
    SENSORS, 2018, 18 (02):
  • [9] Local feature extraction network with high correspondences for 3d point cloud registration
    Li, Dashuang
    He, Kai
    Wang, Lei
    Zhang, Dazhuang
    APPLIED INTELLIGENCE, 2022, 52 (09) : 9638 - 9649
  • [10] Point Cloud Registration Based on Fast Point Feature Histogram Descriptors for 3D Reconstruction of Trees
    Peng, Yeping
    Lin, Shengdong
    Wu, Hongkun
    Cao, Guangzhong
    REMOTE SENSING, 2023, 15 (15)