THE LEFT RIEMANN-LIOUVILLE FRACTIONAL HERMITE-HADAMARD TYPE INEQUALITIES FOR CONVEX FUNCTIONS

被引:19
|
作者
Kunt, Mehmet [1 ]
Karapinar, Dunya [1 ]
Turhan, Sercan [2 ]
Iscan, Imdat [2 ]
机构
[1] Karadeniz Tech Univ, Dept Math, Fac Sci, TR-61080 Trabzon, Turkey
[2] Giresun Univ, Dept Math, Fac Sci & Arts, TR-28200 Giresun, Turkey
关键词
convex functions; Hermite-Hadamard inequalities; left Riemann-Liouville fractional integral; trapezoid type inequalities; midpoint type inequalities; DIFFERENTIABLE MAPPINGS;
D O I
10.1515/ms-2017-0261
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, with a new approach, a new fractional Hermite-Hadamard type inequalities for convex functions is obtained by using only the left Riemann-Liouville fractional integral. Also, to have new fractional trapezoid and midpoint type inequalities for the differentiable convex functions, two new equalities are proved. Our results generalize earlier studies. We expect that this study will be lead to the new fractional integration studies for Hermite-Hadamard type inequalities.
引用
收藏
页码:773 / 784
页数:12
相关论文
共 50 条
  • [1] Hermite-Hadamard Type Riemann-Liouville Fractional Integral Inequalities for Convex Functions
    Tomar, Muharrem
    Set, Erhan
    Sarikaya, M. Zeki
    INTERNATIONAL CONFERENCE ON ADVANCES IN NATURAL AND APPLIED SCIENCES: ICANAS 2016, 2016, 1726
  • [2] New Riemann-Liouville fractional Hermite-Hadamard type inequalities for harmonically convex functions
    Sanli, Zeynep
    Kunt, Mehmet
    Koroglu, Tuncay
    ARABIAN JOURNAL OF MATHEMATICS, 2020, 9 (02) : 431 - 441
  • [3] New Hermite-Hadamard Type Inequalities for ψ-Riemann-Liouville Fractional Integral via Convex Functions
    Sun, Yining
    Xu, Run
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2020, 2020
  • [4] ON HERMITE-HADAMARD TYPE INEQUALITIES FOR RIEMANN-LIOUVILLE FRACTIONAL INTEGRALS
    Sarikaya, Mehmet Zeki
    Yildirim, Huseyin
    MISKOLC MATHEMATICAL NOTES, 2017, 17 (02) : 1049 - 1059
  • [5] Hermite-Hadamard Type Inequalities for s-Convex Functions via Riemann-Liouville Fractional Integrals
    Wang, Shu-Hong
    Qi, Feng
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2017, 22 (06) : 1124 - 1134
  • [6] HERMITE-HADAMARD TYPE INEQUALITIES FOR PRODUCT OF HARMONICALLY CONVEX FUNCTIONS VIA RIEMANN-LIOUVILLE FRACTIONAL INTEGRALS
    Kunt, Mehmet
    Iscan, Imdat
    Yazici, Nazli
    JOURNAL OF MATHEMATICAL ANALYSIS, 2016, 7 (04): : 74 - 82
  • [7] Hermite-Hadamard type inequalities for generalized Riemann-Liouville fractional integrals of h-convex functions
    Dragomir, Silvestru Sever
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (03) : 2364 - 2380
  • [8] Hermite-Hadamard inequalities for Riemann-Liouville fractional integrals
    Ali, Muhammad Aamir
    Korus, Peter
    Valdes, Juan E. Napoles
    MATHEMATICA SLOVACA, 2024, 74 (05) : 1173 - 1180
  • [9] On the Hermite-Hadamard type inequality for ψ-Riemann-Liouville fractional integrals via convex functions
    Liu, Kui
    Wang, JinRong
    O'Regan, Donal
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019, 2019 (1)
  • [10] Hermite-Hadamard type inequalities for multiplicative Riemann-Liouville fractional integrals
    Du, Tingsong
    Peng, Yu
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 440