Matrix Product States for Dynamical Simulation of Infinite Chains

被引:135
作者
Banuls, M. C. [1 ]
Hastings, M. B. [2 ]
Verstraete, F. [3 ]
Cirac, J. I. [1 ]
机构
[1] Max Planck Inst Quantum Opt, D-85748 Garching, Germany
[2] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA
[3] Univ Vienna, Fak Phys, A-1090 Vienna, Austria
关键词
RENORMALIZATION-GROUP; SPIN CHAINS; THERMODYNAMICS;
D O I
10.1103/PhysRevLett.102.240603
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a new method for computing the ground state properties and the time evolution of infinite chains based on a transverse contraction of the tensor network. The method does not require finite size extrapolation and avoids explicit truncation of the bond dimension along the evolution. By folding the network in the time direction prior to contraction, time-dependent expectation values and dynamic correlation functions can be computed after much longer evolution time than with any previous method. Moreover, the algorithm we propose can be used for the study of some noninvariant infinite chains, including impurity models.
引用
收藏
页数:4
相关论文
共 31 条
[1]   VALENCE BOND GROUND-STATES IN ISOTROPIC QUANTUM ANTIFERROMAGNETS [J].
AFFLECK, I ;
KENNEDY, T ;
LIEB, EH ;
TASAKI, H .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 115 (03) :477-528
[2]   The density matrix renormalization group for a quantum spin chain at non-zero temperature [J].
Bursill, RJ ;
Xiang, T ;
Gehring, GA .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1996, 8 (40) :L583-L590
[3]   Evolution of entanglement entropy in one-dimensional systems [J].
Calabrese, P ;
Cardy, J .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2005, :15-38
[4]   Time-dependent density-matrix renormalization group: A systematic method for the study of quantum many-body out-of-equilibrium systems [J].
Cazalilla, MA ;
Marston, JB .
PHYSICAL REVIEW LETTERS, 2002, 88 (25) :4-256403
[5]   Time-dependent density-matrix renormalization-group using adaptive effective Hilbert spaces -: art. no. P04005 [J].
Daley, AJ ;
Kollath, C ;
Schollwöck, U ;
Vidal, G .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2004,
[6]   FINITELY CORRELATED STATES ON QUANTUM SPIN CHAINS [J].
FANNES, M ;
NACHTERGAELE, B ;
WERNER, RF .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 144 (03) :443-490
[7]   An area law for one-dimensional quantum systems [J].
Hastings, M. B. .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2007,
[8]   Observations outside the light cone: Algorithms for nonequilibrium and thermal states [J].
Hastings, M. B. .
PHYSICAL REVIEW B, 2008, 77 (14)
[9]  
HUBENER R, ARXIV09041925V1
[10]   EQUIVALENCE AND SOLUTION OF ANISOTROPIC SPIN-1 MODELS AND GENERALIZED T-J FERMION MODELS IN ONE DIMENSION [J].
KLUMPER, A ;
SCHADSCHNEIDER, A ;
ZITTARTZ, J .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (16) :L955-L959