Elucidation of the Mechanism of Action of Ginseng Against Acute Lung Injury/Acute Respiratory Distress Syndrome by a Network Pharmacology-Based Strategy

被引:31
作者
Ding, Qi [1 ,2 ]
Zhu, Wenxiang [1 ]
Diao, Yirui [1 ]
Xu, Gonghao [1 ]
Wang, Lu [1 ]
Qu, Sihao [1 ]
Shi, Yuanyuan [1 ,2 ]
机构
[1] Beijing Univ Chinese Med, Sch Life Sci, Beijing, Peoples R China
[2] Beijing Univ Chinese Med, Shenzhen Res Inst, Shenzhen, Peoples R China
关键词
ginseng; ALI; ARDS; network pharmacology; molecular docking; PI3K-Akt signaling pathway; MAPK signaling pathway; KOREAN RED GINSENG; MOLECULAR-MECHANISM; POLARIZATION; INFLAMMATION; SURVIVAL; PATHWAY; MS/MS; PI3K; MAP;
D O I
10.3389/fphar.2020.611794
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Acute respiratory distress syndrome (ARDS) is a complex cascade that develops from acute lung injury (ALI). Ginseng can be used to treat ALI/ARDS. Studies have shown that some of ingredients in ginseng had anti-inflammation, antioxidative, and immune regulation effects and can protect alveolar epithelial cells in mice. However, the potential targets, biological processes, and pathways related to ginseng against ALI/ARDS have not been investigated systematically. We employed network pharmacology, molecular docking, and animal experiments to explore the therapeutic effects and underlying mechanism of action of ginseng against ALI/ARDS. We identified 25 compounds using ultrahigh-performance liquid chromatography Q-Orbitrap mass spectrometry and their 410 putative targets through database analyses. Sixty-nine of them were considered to be key targets of ginseng against ALI/ARDS according to overlapping with ALI/ARDS-related targets and further screening in a protein-protein interaction (PPI) network. The phosphatidylinositol 3-kinase-protein kinase B (PI3K-AkT) and mitogen-activated protein kinase (MAPK) pathways were recognized to have critical roles for ginseng in ALI/ARDS treatment. Signal transducer and activator of transcription (STAT) 3, vascular endothelial growth factor A (VEGFA), fibroblast growth factor (FGF) 2, phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA), MAPK1, and interleukin (IL) 2 were the top six nodes identified by analyses of a compound-target-pathway network. Molecular docking showed that most of the ingredients in ginseng could combine well with the six nodes. Ginseng could reduce the pathologic damage, neutrophil aggregation, proinflammatory factors, and pulmonary edema in vivo and inhibit the PI3K-Akt signaling pathway and MAPK signaling pathway through downregulating expressions of STAT3, VEGFA, FGF2, PIK3CA, MAPK1, and IL2. Our study provides a theoretical basis for ginseng treatment of ALI/ARDS.
引用
收藏
页数:14
相关论文
共 57 条
[1]   UniProt: a worldwide hub of protein knowledge [J].
Bateman, Alex ;
Martin, Maria-Jesus ;
Orchard, Sandra ;
Magrane, Michele ;
Alpi, Emanuele ;
Bely, Benoit ;
Bingley, Mark ;
Britto, Ramona ;
Bursteinas, Borisas ;
Busiello, Gianluca ;
Bye-A-Jee, Hema ;
Da Silva, Alan ;
De Giorgi, Maurizio ;
Dogan, Tunca ;
Castro, Leyla Garcia ;
Garmiri, Penelope ;
Georghiou, George ;
Gonzales, Daniel ;
Gonzales, Leonardo ;
Hatton-Ellis, Emma ;
Ignatchenko, Alexandr ;
Ishtiaq, Rizwan ;
Jokinen, Petteri ;
Joshi, Vishal ;
Jyothi, Dushyanth ;
Lopez, Rodrigo ;
Luo, Jie ;
Lussi, Yvonne ;
MacDougall, Alistair ;
Madeira, Fabio ;
Mahmoudy, Mahdi ;
Menchi, Manuela ;
Nightingale, Andrew ;
Onwubiko, Joseph ;
Palka, Barbara ;
Pichler, Klemens ;
Pundir, Sangya ;
Qi, Guoying ;
Raj, Shriya ;
Renaux, Alexandre ;
Lopez, Milagros Rodriguez ;
Saidi, Rabie ;
Sawford, Tony ;
Shypitsyna, Aleksandra ;
Speretta, Elena ;
Turner, Edward ;
Tyagi, Nidhi ;
Vasudev, Preethi ;
Volynkin, Vladimir ;
Wardell, Tony .
NUCLEIC ACIDS RESEARCH, 2019, 47 (D1) :D506-D515
[2]   The macrophage response towards LPS and its control through the p38MAPK-STAT3 axis [J].
Bode, Johannes G. ;
Ehlting, Christian ;
Haeussinger, Dieter .
CELLULAR SIGNALLING, 2012, 24 (06) :1185-1194
[3]   RCSB Protein Data Bank: biological macromolecular structures enabling research and education in fundamental biology, biomedicine, biotechnology and energy [J].
Burley, Stephen K. ;
Berman, Helen M. ;
Bhikadiya, Charmi ;
Bi, Chunxiao ;
Chen, Li ;
Di Costanzo, Luigi ;
Christie, Cole ;
Dalenberg, Ken ;
Duarte, Jose M. ;
Dutta, Shuchismita ;
Feng, Zukang ;
Ghosh, Sutapa ;
Goodsell, David S. ;
Green, Rachel K. ;
Guranovic, Vladimir ;
Guzenko, Dmytro ;
Hudson, Brian P. ;
Kalro, Tara ;
Liang, Yuhe ;
Lowe, Robert ;
Namkoong, Harry ;
Peisach, Ezra ;
Periskova, Irina ;
Prlic, Andreas ;
Randle, Chris ;
Rose, Alexander ;
Rose, Peter ;
Sala, Raul ;
Sekharan, Monica ;
Shao, Chenghua ;
Tan, Lihua ;
Tao, Yi-Ping ;
Valasatava, Yana ;
Voigt, Maria ;
Westbrook, John ;
Woo, Jesse ;
Yang, Huanwang ;
Young, Jasmine ;
Zhuravleva, Marina ;
Zardecki, Christine .
NUCLEIC ACIDS RESEARCH, 2019, 47 (D1) :D464-D474
[4]   Mammalian MAP kinase signalling cascades [J].
Chang, LF ;
Karin, M .
NATURE, 2001, 410 (6824) :37-40
[5]   MiR-424 overexpression protects alveolar epithelial cells from LPS-induced apoptosis and inflammation by targeting FGF2 via the NF-κB pathway [J].
Cheng, Dongliang ;
Zhu, Changlian ;
Liang, Yuan ;
Xing, Yan ;
Shi, Changsong .
LIFE SCIENCES, 2020, 242
[6]   Ginsenoside Rg3 ameliorates lipopolysaccharide-induced acute lung injury in mice through inactivating the nuclear factor-κB (NF-κB) signaling pathway [J].
Cheng, Zhiqiang ;
Li, Li .
INTERNATIONAL IMMUNOPHARMACOLOGY, 2016, 34 :53-59
[7]   Swiss Target Prediction: updated data and new features for efficient prediction of protein targets of small molecules [J].
Daina, Antoine ;
Michielin, Olivier ;
Zoete, Vincent .
NUCLEIC ACIDS RESEARCH, 2019, 47 (W1) :W357-W364
[8]   The Comparative Toxicogenomics Database: update 2019 [J].
Davis, Allan Peter ;
Grondin, Cynthia J. ;
Johnson, Robin J. ;
Sciaky, Daniela ;
McMorran, Roy ;
Wiegers, Jolene ;
Wiegers, Thomas C. ;
Mattingly, Carolyn J. .
NUCLEIC ACIDS RESEARCH, 2019, 47 (D1) :D948-D954
[9]   Targeting PI3K signaling in cancer: Challenges and advances [J].
De Santis, Maria Chiara ;
Gulluni, Federico ;
Campa, Carlo Cosimo ;
Martini, Miriam ;
Hirsch, Emilio .
BIOCHIMICA ET BIOPHYSICA ACTA-REVIEWS ON CANCER, 2019, 1871 (02) :361-366
[10]   Stemona alkaloids suppress the positive feedback loop between M2 polarization and fibroblast differentiation by inhibiting JAK2/STAT3 pathway in fibroblasts and CXCR4/PI3K/AKT1 pathway in macrophages [J].
Ding, Qi ;
Sun, Jing ;
Xie, Weina ;
Zhang, Mian ;
Zhang, Chaofeng ;
Xu, Xianghong .
INTERNATIONAL IMMUNOPHARMACOLOGY, 2019, 72 :385-394