Complement of gradient estimates and Liouville theorems for nonlinear parabolic equations on noncompact Riemannian manifolds

被引:7
作者
Wang, Wen [1 ,2 ]
机构
[1] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Peoples R China
[2] Hefei Normal Univ, Sch Math Stat, Hefei 230601, Peoples R China
关键词
nonlinear parabolic equation; gradient estimate; Liouville theorem; ELLIPTIC-EQUATIONS;
D O I
10.1002/mma.4121
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, along the idea of Souplet and Zhang, we deduce a local elliptic-type gradient estimates for positive solutions of the nonlinear parabolic equation: [GRAPHICS] on Mx(-,) for 1 and 0. As applications, related Liouville-type theorem is exported. Our results are complement of known results. Copyright (c) 2016 John Wiley & Sons, Ltd.
引用
收藏
页码:2078 / 2083
页数:6
相关论文
共 8 条
[1]   DIFFERENTIAL EQUATIONS ON RIEMANNIAN MANIFOLDS AND THEIR GEOMETRIC APPLICATIONS [J].
CHENG, SY ;
YAU, ST .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1975, 28 (03) :333-354
[2]   GLOBAL AND LOCAL BEHAVIOR OF POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS [J].
GIDAS, B ;
SPRUCK, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1981, 34 (04) :525-598
[3]  
Hamilton R. S., 1993, COMMUN ANAL GEOM, V1, P113
[4]  
LI JY, 1991, J FUNCT ANAL, V100, P233
[5]   ON THE PARABOLIC KERNEL OF THE SCHRODINGER OPERATOR [J].
LI, P ;
YAU, ST .
ACTA MATHEMATICA, 1986, 156 (3-4) :153-201
[6]   Sharp gradient estimate and Yau's Liouville theorem for the heat equation on noncompact manifolds [J].
Souplet, Philippe ;
Zhang, Qi S. .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2006, 38 :1045-1053
[7]   Gradient Estimates for the Equation Δu + cu-α=0 on Riemannian Manifolds [J].
Yang, Yun Yan .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2010, 26 (06) :1177-1182
[8]   Gradient estimates and Liouville theorems for nonlinear parabolic equations on noncompact Riemannian manifolds [J].
Zhu, Xiaobao .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (15) :5141-5146