Zwitterionic Polydopamine Engineered Interface for In Vivo Sensing with High Biocompatibility

被引:128
作者
Feng, Taotao [1 ]
Ji, Wenliang [1 ]
Zhang, Yue [1 ]
Wu, Fei [2 ]
Tang, Qiao [1 ]
Wei, Huan [2 ]
Mao, Lanqun [2 ]
Zhang, Meining [1 ]
机构
[1] Renmin Univ China Beijing, Dept Chem, Beijing 100872, Peoples R China
[2] Chinese Acad Sci, Beijing Natl Lab Mol Sci, Key Lab Analyt Chem Living Biosyst, Inst Chem, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
acute neuroinflammatory response; antifouling; biointerfacing; in vivo analysis; polydopamine; POLY(ETHYLENE GLYCOL); ADSORPTION; POLYMER; MICROELECTRODES; NANOPARTICLES; PROTEINS; ADHESION; BRUSHES;
D O I
10.1002/anie.202010675
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Electrochemical sensing performance is often compromised by electrode biofouling (e.g., proteins nonspecific binding) in complex biological fluids; however, the design and construction of a robust biointerface remains a great challenge. Herein, inspired by nature, we demonstrate a robust polydopamine-engineered biointerfacing, to tailing zwitterionic molecules (i.e., sulfobetaine methacrylate, SBMA) through Michael Addition. The SBMA-PDA biointerface can resist proteins nonspecific binding in complex biological fluids while enhancing interfacial electron transfer and electrochemical stability of the electrode. In addition, this sensing interface can be integrated with tissue-implantable electrode for in vivo analysis with improved sensing performance, preserving ca. 92.0% of the initial sensitivity after 2 h of implantation in brain tissue, showing low acute neuroinflammatory responses and good stability both in normal and in Parkinson ' s disease (PD) rat brain tissue.
引用
收藏
页码:23445 / 23449
页数:5
相关论文
共 65 条
[31]   Polydopamine and Its Derivative Materials: Synthesis and Promising Applications in Energy, Environmental, and Biomedical Fields [J].
Liu, Yanlan ;
Ai, Kelong ;
Lu, Lehui .
CHEMICAL REVIEWS, 2014, 114 (09) :5057-5115
[32]   Antibiofouling polymer interfaces: poly(ethylene glycol) and other promising candidates [J].
Lowe, Sean ;
O'Brien-Simpson, Neil M. ;
Connal, Luke A. .
POLYMER CHEMISTRY, 2015, 6 (02) :198-212
[33]  
Mao L., 2020, ANGEW CHEM, V132, P19158
[34]   Protein Resistant Polymeric Biomaterials [J].
Ngo, Bryan Khai D. ;
Grunlan, Melissa A. .
ACS MACRO LETTERS, 2017, 6 (09) :992-1000
[35]   Atypical Structural and π-Electron Features of a Melanin Polymer That Lead to Superior Free-Radical-Scavenging Properties [J].
Panzella, Lucia ;
Gentile, Gennaro ;
D'Errico, Gerardino ;
Della Vecchia, Nicola F. ;
Errico, Maria E. ;
Napolitano, Alessandra ;
Carfagna, Cosimo ;
d'Ischia, Marco .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (48) :12684-12687
[36]   SELF-ASSEMBLED ORGANIC MONOLAYERS - MODEL SYSTEMS FOR STUDYING ADSORPTION OF PROTEINS AT SURFACES [J].
PRIME, KL ;
WHITESIDES, GM .
SCIENCE, 1991, 252 (5009) :1164-1167
[37]   Structural Similarity Image Analysis for Detection of Adenosine and Dopamine in Fast-Scan Cyclic Voltammetry Color Plots [J].
Puthongkham, Pumidech ;
Rocha, Julian ;
Borgus, Jason R. ;
Ganesana, Mallikarjunarao ;
Wang, Ying ;
Chang, Yuanyu ;
Gahlmann, Andreas ;
Venton, B. Jill .
ANALYTICAL CHEMISTRY, 2020, 92 (15) :10485-10494
[38]   Electrogenerated Chemiluminescence Biosensing [J].
Qi, Honglan ;
Zhang, Chengxiao .
ANALYTICAL CHEMISTRY, 2020, 92 (01) :524-534
[39]   Closing in on what motivates motivation [J].
Rice, Margaret E. .
NATURE, 2019, 570 (7759) :40-42
[40]   Monitoring Molecules in Neuroscience Then and Now [J].
Rice, Margaret E. .
ACS CHEMICAL NEUROSCIENCE, 2017, 8 (02) :215-217