Mean radiation fluxes in the near-IR spectral range: Algorithms for calculation

被引:14
|
作者
Titov, GA
Zhuravleva, TB
Zuev, VE
机构
关键词
D O I
10.1029/96JD02218
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Algorithms are presented to compute the mean fluxes of shortwave radiation, modulated by statistically homogeneous broken clouds, in the near-IR spectral range (0.7-3.2 mu m). One method of the mean spectral flux computation consists of dividing the spectral interval in question into N-int subintervals according to the spectral resolution specified. The mean spectral fluxes are then calculated with the Monte Carlo method by assuming constant cloud optical characteristics within each subinterval. This last method (algorithm 1) accurately accounts for the spectral behavior of optical characteristics of clouds and atmospheric gases and can therefore be regarded as a reference. The mean spectral flux computations of high spectral resolution (say, Delta nu = 10-20 cm(-1)) may require several hundreds of spectral intervals. Therefore the method of dependent tests (algorithm 2) is proposed, which effectively uses notable features of the spectral dependence of cloud optical parameters, thus allowing significant simplifications and extra savings of computer time. Comparison of results from algorithms 1 and 2 shows that the mean radiant fluxes agree to within the relative computation error (3%). This indicates that algorithm 2 is reasonably accurate; in addition, its efficiency is several orders of magnitude better than that of the reference algorithm 1.
引用
收藏
页码:1819 / 1832
页数:14
相关论文
共 50 条
  • [1] Photoconductive organic materials for the near-IR radiation range
    N. A. Davidenko
    N. A. Derevyanko
    A. A. Ishchenko
    N. G. Kuvshinsky
    A. V. Kulinich
    O. Ya. Neiland
    M. V. Plotniece
    Russian Chemical Bulletin, 2004, 53 : 1674 - 1680
  • [2] Photoconductive organic materials for the near-IR radiation range
    Davidenko, NA
    Derevyanko, NA
    Ishchenko, AA
    Kuvshinsky, NG
    Kulinich, AV
    Neiland, OY
    Plotniece, MV
    RUSSIAN CHEMICAL BULLETIN, 2004, 53 (08) : 1674 - 1680
  • [3] GaSb/GaAlAsSb Heterostructure Photodiodes for the Near-IR Spectral Range
    E. V. Kunitsyna
    I. A. Andreev
    G. G. Konovalov
    E. V. Ivanov
    A. A. Pivovarova
    N. D. Il’inskaya
    Yu. P. Yakovlev
    Semiconductors, 2018, 52 : 1215 - 1220
  • [4] GaSb/GaAlAsSb Heterostructure Photodiodes for the Near-IR Spectral Range
    Kunitsyna, E. V.
    Andreev, I. A.
    Konovalov, G. G.
    Ivanov, E. V.
    Pivovarova, A. A.
    Il'inskaya, N. D.
    Yakovlev, Yu. P.
    SEMICONDUCTORS, 2018, 52 (09) : 1215 - 1220
  • [5] Characteristics of a Silicon Avalanche Photodiode for the Near-IR Spectral Range
    Aruev, P. N.
    Ber, B. Ya
    Gorokhov, A. N.
    Zabrodskii, V. V.
    Kazantsev, D. Yu.
    Nikolaev, A. V.
    Filimonov, V. V.
    Shvarts, M. Z.
    Sherstnev, E. V.
    TECHNICAL PHYSICS LETTERS, 2019, 45 (08) : 780 - 782
  • [6] Characteristics of a Silicon Avalanche Photodiode for the Near-IR Spectral Range
    P. N. Aruev
    B. Ya Ber
    A. N. Gorokhov
    V. V. Zabrodskii
    D. Yu. Kazantsev
    A. V. Nikolaev
    V. V. Filimonov
    M. Z. Shvarts
    E. V. Sherstnev
    Technical Physics Letters, 2019, 45 : 780 - 782
  • [7] PbS quantum dots with stable efficient luminescence in the near-IR spectral range
    Bakueva, L
    Gorelikov, I
    Musikhin, S
    Zhao, XS
    Sargent, EH
    Kumacheva, E
    ADVANCED MATERIALS, 2004, 16 (11) : 926 - 929
  • [8] A CVD Diamond-Based Photodetector for the Visible and Near-IR Spectral Range
    Kukushkin, V. A.
    Radischev, D. B.
    Lobaev, M. A.
    Bogdanov, S. A.
    Zdoroveischev, A. V.
    Chunin, I. I.
    TECHNICAL PHYSICS LETTERS, 2017, 43 (12) : 1121 - 1123
  • [9] Chemically Synthesized Gold and Silver Particles Absorbing in the Near-IR Spectral Range
    Razumova, Yu. A.
    Toropov, N. A.
    Vartanyan, T. A.
    OPTICS AND SPECTROSCOPY, 2018, 124 (05) : 703 - 706
  • [10] Chemically Synthesized Gold and Silver Particles Absorbing in the Near-IR Spectral Range
    Yu. A. Razumova
    N. A. Toropov
    T. A. Vartanyan
    Optics and Spectroscopy, 2018, 124 : 703 - 706