Quantum Euclidean spaces with noncommutative derivatives

被引:5
作者
Gao, Li [1 ]
Junge, Marius [2 ]
McDonald, Edward [3 ]
机构
[1] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
[2] Univ Illinois, Dept Math, Urbana, IL 61801 USA
[3] Univ New South Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
关键词
Quantum Euclidean space; Moyal plane; pseudo-differential operators; local index formula; LOCAL INDEX FORMULA; MODULAR CURVATURE; OPERATORS; ALGEBRAS; PROOF;
D O I
10.4171/JNCG/459
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Quantum Euclidean spaces, as Moyal deformations of Euclidean spaces, are the model examples of noncompact noncommutative manifold. In this paper, we study the quantum Euclidean space equipped with partial derivatives satisfying canonical commutation relation (CCR). This gives an example of semifinite spectral triple with nonflat geometric structure. We develop an abstract symbol calculus for the pseudo-differential operators with noncommuting derivatives. We also ob-tain a local index formula in our setting via the computation of the Connes???Chern character of the corresponding spectral triple.
引用
收藏
页码:153 / 213
页数:61
相关论文
共 44 条