Deriving high-quality surface emissivity spectra from atmospheric infrared sounder data using cumulative distribution function matching and principal component analysis regression

被引:10
作者
Zhang, Quan [1 ,2 ]
Cheng, Jie [1 ,2 ,4 ]
Liang, Shunlin [1 ,2 ,3 ]
机构
[1] Beijing Normal Univ, Fac Geog Sci, State Key Lab Remote Sensing Sci, Beijing 100875, Peoples R China
[2] Beijing Normal Univ, Fac Geog Sci, Inst Remote Sensing Sci & Engn, Beijing 100875, Peoples R China
[3] Univ Maryland, Dept Geog Sci, College Pk, MD 20742 USA
[4] ARS, USDA, Hydrol & Remote Sensing Lab, Beltsville, MD 20705 USA
基金
中国国家自然科学基金;
关键词
Emissivity; AIRS; MODIS; Cumulative distribution function; Principal component analysis; TEMPERATURE; MODIS; RETRIEVAL; ALGORITHM; PRODUCTS; SOIL; AIRS/AMSU/HSB; VALIDATION; MISSION; DESERT;
D O I
10.1016/j.rse.2018.04.033
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The Atmospheric Infrared Sounder (AIRS) provides limited hyperspectral thermal infrared (TIR) emissivity data for the retrieval of critical land surface and climate parameters in environmental research. However, the AIRS land surface emissivity (LSE) data lack accuracy, resulting in low-quality data retrieval, particularly for the lower boundary layer. In this study, a practical and effective method is proposed to derive high-accuracy AIRS LSE data and continuous emissivity spectra in the TIR range of 8-14.5 mu m. The AIRS LSE is first rescaled to the Moderate Resolution Imaging Spectroradiometer (MODIS) LSE using cumulative distribution function (CDF) matching, and then the emissivity spectra are recovered from the rescaled AIRS LSE using principal component analysis (PCA) regression. The results show that resealing the AIRS LSE significantly reduced the bias and root mean square (RMS) error in the study area of Africa and the Arabian Peninsula, and PCA regression successfully recovered the emissivity spectra in the 8-14.5 mu m range from the resealed AIRS LSE. At two validation sites in the Namib and Kalahari deserts of southern Africa, the biases of the resealed AIRS LSE at three hinge points are 0.62% and 0.61%, respectively, and the biases of the recovered AIRS LSE spectra in the 8-12 mu m TIR range are 0.53% and 0.56%, respectively. Variations in land cover homogeneity and the accuracy of the MODIS LSE are the critical factors impacting the final accuracy of the rescaled AIRS LSE and the recovered emissivity spectra.
引用
收藏
页码:388 / 399
页数:12
相关论文
共 49 条
[21]  
Li J., 2007, GEOPHYS RES LETT, V34, P130
[22]   Derivation of global hyperspectral resolution surface emissivity spectra from advanced infrared sounder radiance measurements [J].
Li, Jun ;
Li, Jinlong .
GEOPHYSICAL RESEARCH LETTERS, 2008, 35 (15)
[23]   First observation-based estimates of cloud-free aerosol radiative forcing across China [J].
Li, Zhanqing ;
Lee, Kwon-Ho ;
Wang, Yuesi ;
Xin, Jinyuan ;
Hao, Wei-Min .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2010, 115
[24]   Land surface emissivity retrieval from satellite data [J].
Li, Zhao-Liang ;
Wu, Hua ;
Wang, Ning ;
Qiu, Shi ;
Sobrino, Jose A. ;
Wan, Zhengming ;
Tang, Bo-Hui ;
Yan, Guangjian .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2013, 34 (9-10) :3084-3127
[25]   Determining diurnal variations of land surface emissivity from geostationary satellites [J].
Li, Zhenglong ;
Li, Jun ;
Li, Yue ;
Zhang, Yong ;
Schmit, Timothy J. ;
Zhou, Lihang ;
Goldberg, Mitchell D. ;
Menzel, W. Paul .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2012, 117
[26]   Developing an improved soil moisture dataset by blending passive and active microwave satellite-based retrievals [J].
Liu, Y. Y. ;
Parinussa, R. M. ;
Dorigo, W. A. ;
De Jeu, R. A. M. ;
Wagner, W. ;
van Dijk, A. I. J. M. ;
McCabe, M. F. ;
Evans, J. P. .
HYDROLOGY AND EARTH SYSTEM SCIENCES, 2011, 15 (02) :425-436
[27]   Diurnal variation in Sahara desert sand emissivity during the dry season from IASI observations [J].
Masiello, Guido ;
Serio, Carmine ;
Venafra, Sara ;
DeFeis, Italia ;
Borbas, Eva E. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2014, 119 (03) :1626-1638
[28]  
Mira M., 2007, J GEOPHYS RES, V112, P117
[29]  
Moy L.A., 2006, COMP LAND SURFACE IN
[30]   Estimating sub-pixel surface roughness using remotely sensed stereoscopic data [J].
Mushkin, A ;
Gillespie, AR .
REMOTE SENSING OF ENVIRONMENT, 2005, 99 (1-2) :75-83