Deriving high-quality surface emissivity spectra from atmospheric infrared sounder data using cumulative distribution function matching and principal component analysis regression

被引:9
作者
Zhang, Quan [1 ,2 ]
Cheng, Jie [1 ,2 ,4 ]
Liang, Shunlin [1 ,2 ,3 ]
机构
[1] Beijing Normal Univ, Fac Geog Sci, State Key Lab Remote Sensing Sci, Beijing 100875, Peoples R China
[2] Beijing Normal Univ, Fac Geog Sci, Inst Remote Sensing Sci & Engn, Beijing 100875, Peoples R China
[3] Univ Maryland, Dept Geog Sci, College Pk, MD 20742 USA
[4] ARS, USDA, Hydrol & Remote Sensing Lab, Beltsville, MD 20705 USA
基金
中国国家自然科学基金;
关键词
Emissivity; AIRS; MODIS; Cumulative distribution function; Principal component analysis; TEMPERATURE; MODIS; RETRIEVAL; ALGORITHM; PRODUCTS; SOIL; AIRS/AMSU/HSB; VALIDATION; MISSION; DESERT;
D O I
10.1016/j.rse.2018.04.033
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The Atmospheric Infrared Sounder (AIRS) provides limited hyperspectral thermal infrared (TIR) emissivity data for the retrieval of critical land surface and climate parameters in environmental research. However, the AIRS land surface emissivity (LSE) data lack accuracy, resulting in low-quality data retrieval, particularly for the lower boundary layer. In this study, a practical and effective method is proposed to derive high-accuracy AIRS LSE data and continuous emissivity spectra in the TIR range of 8-14.5 mu m. The AIRS LSE is first rescaled to the Moderate Resolution Imaging Spectroradiometer (MODIS) LSE using cumulative distribution function (CDF) matching, and then the emissivity spectra are recovered from the rescaled AIRS LSE using principal component analysis (PCA) regression. The results show that resealing the AIRS LSE significantly reduced the bias and root mean square (RMS) error in the study area of Africa and the Arabian Peninsula, and PCA regression successfully recovered the emissivity spectra in the 8-14.5 mu m range from the resealed AIRS LSE. At two validation sites in the Namib and Kalahari deserts of southern Africa, the biases of the resealed AIRS LSE at three hinge points are 0.62% and 0.61%, respectively, and the biases of the recovered AIRS LSE spectra in the 8-12 mu m TIR range are 0.53% and 0.56%, respectively. Variations in land cover homogeneity and the accuracy of the MODIS LSE are the critical factors impacting the final accuracy of the rescaled AIRS LSE and the recovered emissivity spectra.
引用
收藏
页码:388 / 399
页数:12
相关论文
共 49 条
[1]  
[Anonymous], 2010, RTTOV UWIREMIS IR LA
[2]   AIRS/AMSU/HSB on the aqua mission: Design, science objectives, data products, and processing systems [J].
Aumann, HH ;
Chahine, MT ;
Gautier, C ;
Goldberg, MD ;
Kalnay, E ;
McMillin, LM ;
Revercomb, H ;
Rosenkranz, PW ;
Smith, WL ;
Staelin, DH ;
Strow, LL ;
Susskind, J .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2003, 41 (02) :253-264
[3]   The ASTER spectral library version 2.0 [J].
Baldridge, A. M. ;
Hook, S. J. ;
Grove, C. I. ;
Rivera, G. .
REMOTE SENSING OF ENVIRONMENT, 2009, 113 (04) :711-715
[4]   Potential of getis statistics to characterize the radiometric uniformity and stability of test sites used for the calibration of earth observation sensors [J].
Bannari, A ;
Omari, K ;
Teillet, RA ;
Fedosejevs, G .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2005, 43 (12) :2918-2926
[5]   Improving weather forecasting and providing new data on greenhouse gases [J].
Chahine, Moustafa T. ;
Pagano, Thomas S. ;
Aumann, Hartmut H. ;
Atlas, Robert ;
Barnet, Christopher ;
Blaisdell, John ;
Chen, Luke ;
Divakarla, Murty ;
Fetzer, Eric J. ;
Goldberg, Mitch ;
Gautier, Catherine ;
Granger, Stephanie ;
Hannon, Scott ;
Irion, Fredrick W. ;
Kakar, Ramesh ;
Kalnay, Eugenia ;
Lambrigtsen, Bjorn H. ;
Lee, Sung-Yung ;
Le Marshall, John ;
McMillan, W. Wallace ;
McMillin, Larry ;
Olsen, Edward T. ;
Revercomb, Henry ;
Rosenkranz, Philip ;
Smith, William L. ;
Staelin, Did ;
Strow, L. Larrabee ;
Susskind, Joel ;
Tobin, David ;
Wolf, Walter ;
Zhou, Lihang .
BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2006, 87 (07) :911-+
[6]   A Framework for Estimating the 30 m Thermal-Infrared Broadband Emissivity From Landsat Surface Reflectance Data [J].
Cheng, Jie ;
Liu, Hao ;
Liang, Shunlin ;
Nie, Aixiu ;
Liu, Qiang ;
Guo, Yamin .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2017, 122 (21) :11405-11421
[7]   Estimating the broadband longwave emissivity of global bare soil from the MODIS shortwave albedo product [J].
Cheng, Jie ;
Liang, Shunlin .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2014, 119 (02) :614-634
[8]   Effects of Thermal-Infrared Emissivity Directionality on Surface Broadband Emissivity and Longwave Net Radiation Estimation [J].
Cheng, Jie ;
Liang, Shunlin .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2014, 11 (02) :499-503
[9]   Validation of the moderate-resolution imaging spectroradiometer land surface emissivity products over the Taklimakan Desert [J].
Cheng, Jie ;
Liang, Shunlin ;
Dong, Lixin ;
Ren, Baiyang ;
Shi, Linpeng .
JOURNAL OF APPLIED REMOTE SENSING, 2014, 8
[10]   A Stepwise Refining Algorithm of Temperature and Emissivity Separation for Hyperspectral Thermal Infrared Data [J].
Cheng, Jie ;
Liang, Shunlin ;
Wang, Jindi ;
Li, Xiaowen .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2010, 48 (03) :1588-1597