A Hybrid Ultra-Short-Term and Short-Term Wind Speed Forecasting Method Based on CEEMDAN and GA-BPNN

被引:10
|
作者
Shang, Yi [1 ]
Miao, Lijuan [2 ,3 ]
Shan, Yunpeng [4 ]
Gnyawali, Kaushal Raj [5 ]
Zhang, Jing [2 ]
Kattel, Giri [2 ,6 ,7 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Atmospher Phys, Nanjing, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Sch Geog Sci, Nanjing, Peoples R China
[3] Leibniz Inst Agr Dev Transit Econ IAMO, Halle, Germany
[4] Brookhaven Natl Lab, Environm & Climate Sci Dept, Upton, NY USA
[5] Himalayan Risk Res Inst, Nat Hazards Sect, Bhaktapur, Nepal
[6] Univ Melbourne, Dept Infrastructure Engn, Water & Agr Program WEAP, Melbourne, Australia
[7] Tsinghua Univ, Dept Hydraul Engn, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Forecasting; Renewable energy; Machine learning; Neural networks; SUPPORT VECTOR MACHINE; EMPIRICAL MODE DECOMPOSITION; NEURAL-NETWORK; LEAST-SQUARE; TIME-SERIES; MULTIOBJECTIVE OPTIMIZATION; PREDICTION; MULTISTEP; ALGORITHM; SYSTEM;
D O I
10.1175/WAF-D-21-0047.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Reliable ultra-short-term and short-term wind speed forecasting is pivotal for clean energy development and grid operation planning. During the wind forecasting process, decomposing the measured wind speed into data with different frequencies is a solution for overcoming the nonlinearity and the randomness of the natural wind. Existing forecasting methods, a hybrid method based on empirical mode decomposition and the back propagation neural network optimized by genetic algorithm (EMD-GA-BPNN), rely on partial decomposing the measured wind speed into data with different frequencies and subsequently achieving forecasting results from machine learning algorithms. However, such methods can roughly divide IMF signals in different frequency domains, but each frequency domain contains signals with multiple frequencies. The condition reflects that the method cannot fully distinguish wind speed into data with different frequencies and thus it compromises the forecasting accuracy. A complete decomposition of measured wind speed can reduce the complexity of machine learning algorithm, and has become a useful approach for precise simulations of wind speed. Here, we propose a novel hybrid method (CEEMDAN-GA-BPNN) based on the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) by completely decomposing the measured wind speed. The decomposition results are put into the back propagation neural network optimized by a genetic algorithm (GA-BPNN), and the final forecasting results are achieved by combining all the output values by GA-BPNN for each decomposition result from CEEMDAN. We benchmark the forecasting accuracy of the proposed hybrid method against EMD-GA-BPNN integrated by EMD and GA-BPNN. From a wind farm case in Yunnan Province, China, both for ultra-short-term forecasting (15 min) and short-term forecasting (1 h), the performance of the proposed method exceeds EMD-GA-BPNN in several criteria, including root-mean-square error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), and coefficient of determination (R-2). The forecasting accuracy in decomposed components of low frequencies outperform components of high and middle frequencies. Fine improvement of the error metric (in percentage) in ultra-short-term/short-term forecasting is found by the complete decomposition method CEEMDAN-GA-BPNN: RMSE (7.0% and 8.6%), MAE (7.41% and 7.9%), MAPE (11.0% and 8.7%), and R-2 (2.2% and 11.0%), compared with the incomplete decomposing method EMD-GA-BPNN. Our result suggests that CEEMDAN-GA-BPNN could be an accurate wind speed forecasting tool for wind farms development and intelligent grid operations. Significance StatementNonlinearity and randomness of natural wind speed data are the limitations for short-term and ultra-short-term wind speed forecasting. By decreasing forecasting error in machine learning training process, data decomposition for the measured wind speed has become an effective method for overcoming this issue. Nonetheless, the normal incomplete decomposition method will compromise the extent of forecasting accuracy. We introduce a novel hybrid and complete decomposition method CEEMDAN-GA-BPNN (the complete decomposition method). Measured wind speed data from a wind farm in Yunnan Province, China, has been utilized. CEEMDAN-GA-BPNN outperforms EMD-GA-BPNN (the partial decomposition method) in forecasting accuracy both in the ultra-short-term and the short-term wind speed forecasting.
引用
收藏
页码:415 / 428
页数:14
相关论文
共 50 条
  • [1] Wind process pattern forecasting based ultra-short-term wind speed hybrid prediction
    Wang, Fei
    Tong, Shuang
    Sun, Yiqian
    Xie, Yongsheng
    Zhen, Zhao
    Li, Guoqing
    Cao, Chunmei
    Duic, Neven
    Liu, Dagui
    ENERGY, 2022, 255
  • [2] A Hybrid Method for Short-Term Wind Speed Forecasting
    Zhang, Jinliang
    Wei, YiMing
    Tan, Zhong-fu
    Wang, Ke
    Tian, Wei
    SUSTAINABILITY, 2017, 9 (04):
  • [3] Ultra-short-term Wind Speed Forecasting Based on a Hybrid FEEMD-ICS-LSSVM Method
    Yang, Xin
    Zhou, Hao
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 181 - 185
  • [4] A novel model based on CEEMDAN, IWOA, and LSTM for ultra-short-term wind power forecasting
    Shaomei Yang
    Aijia Yuan
    Zhengqin Yu
    Environmental Science and Pollution Research, 2023, 30 (5) : 11689 - 11705
  • [5] A novel model based on CEEMDAN, IWOA, and LSTM for ultra-short-term wind power forecasting
    Yang, Shaomei
    Yuan, Aijia
    Yu, Zhengqin
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2023, 30 (05) : 11689 - 11705
  • [6] Ultra-short-term / short-term wind speed prediction based on improved singular spectrum analysis
    Yang, Qiuling
    Deng, Changhong
    Chang, Xiqiang
    RENEWABLE ENERGY, 2022, 184 : 36 - 44
  • [7] Modes decomposition forecasting approach for ultra-short-term wind speed
    Tian, Zhongda
    APPLIED SOFT COMPUTING, 2021, 105
  • [8] A hybrid approach to ultra short-term wind speed prediction using CEEMDAN and Informer
    Bommidi, Bala Saibabu
    Kosana, Vishalteja
    Teeparthi, Kiran
    Madasthu, Santhosh
    2022 22ND NATIONAL POWER SYSTEMS CONFERENCE, NPSC, 2022,
  • [9] Short-term wind speed forecasting based on a hybrid model
    Zhang, Wenyu
    Wang, Jujie
    Wang, Jianzhou
    Zhao, Zengbao
    Tian, Meng
    APPLIED SOFT COMPUTING, 2013, 13 (07) : 3225 - 3233
  • [10] A review on short-term and ultra-short-term wind power prediction
    Xue, Yusheng
    Yu, Chen
    Zhao, Junhua
    Li, Kang
    Liu, Xueqin
    Wu, Qiuwei
    Yang, Guangya
    Dianli Xitong Zidonghua/Automation of Electric Power Systems, 2015, 39 (06): : 141 - 151