Adaptive control for switched uncertain nonlinear systems with time-varying output constraint and input saturation

被引:21
作者
Chen, Aiqing [1 ]
Tang, Li [1 ]
Liu, Yan-Jun [1 ]
Gao, Ying [2 ]
机构
[1] Liaoning Univ Technol, Coll Sci, Jinzhou 121001, Peoples R China
[2] Tangshan Normal Univ, Dept Math & Informat Sci, Tangshan, Peoples R China
基金
中国国家自然科学基金;
关键词
input asymmetric saturation; switched uncertain nonlinear systems; Tangent Barrier Lyapunov Function; time-varying output constraint; BARRIER LYAPUNOV FUNCTIONS; NEURAL TRACKING CONTROL; PREDICTIVE CONTROL; DELAY SYSTEMS; FUZZY CONTROL; NN CONTROL; DESIGN; FORM;
D O I
10.1002/acs.3036
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper is concerned with adaptive tracking control for switched uncertain nonlinear systems, which contain the time-varying output constraint (TVOC) and input asymmetric saturation characteristic. In response to the unknown functions, the fuzzy logic systems are adopted. The controller is constructed by the backstepping technique. Based on the Tangent Barrier Lyapunov Function (BLF-Tan), an adaptive switched control scheme is designed. It is demonstrated that all signals in the resulted system are semiglobally uniformly ultimately bounded with TVOC under arbitrary switchings. Furthermore, the effectiveness of presented control method is validated via the simulation example.
引用
收藏
页码:1344 / 1358
页数:15
相关论文
共 59 条
[1]   Optimal control of switching systems [J].
Bengea, SC ;
DeCarlo, RA .
AUTOMATICA, 2005, 41 (01) :11-27
[2]   Direct adaptive fuzzy control of nonlinear strict-feedback systems [J].
Chen, Bing ;
Liu, Xiaoping ;
Liu, Kefu ;
Lin, Chong .
AUTOMATICA, 2009, 45 (06) :1530-1535
[3]   Adaptive Fuzzy Asymptotic Control of MIMO Systems With Unknown Input Coefficients Via a Robust Nussbaum Gain-Based Approach [J].
Chen, Ci ;
Liu, Zhi ;
Xie, Kan ;
Liu, Yanjun ;
Zhang, Yun ;
Chen, C. L. Philip .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2017, 25 (05) :1252-1263
[4]   Global Mittag-Leffler stability and synchronization of memristor-based fractional-order neural networks [J].
Chen, Jiejie ;
Zeng, Zhigang ;
Jiang, Ping .
NEURAL NETWORKS, 2014, 51 :1-8
[5]   Design and Control of a Wearable Hand Rehabilitation Robot [J].
Cheng, Long ;
Chen, Miao ;
Li, Zhengwei .
IEEE ACCESS, 2018, 6 :74039-74050
[6]   A Neural-Network-Based Controller for Piezoelectric-Actuated Stick-Slip Devices [J].
Cheng, Long ;
Liu, Weichuan ;
Yang, Chenguang ;
Huang, Tingwen ;
Hou, Zeng-Guang ;
Tan, Min .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2018, 65 (03) :2598-2607
[7]   An Adaptive Takagi-Sugeno Fuzzy Model-Based Predictive Controller for Piezoelectric Actuators [J].
Cheng, Long ;
Liu, Weichuan ;
Hou, Zeng-Guang ;
Huang, Tingwen ;
Yu, Junzhi ;
Tan, Min .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2017, 64 (04) :3048-3058
[8]   Adaptive Neural Network-Based Control for a Class of Nonlinear Pure-Feedback Systems With Time-Varying Full State Constraints [J].
Gao, Tingting ;
Liu, Yan-Jun ;
Liu, Lei ;
Li, Dapeng .
IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2018, 5 (05) :923-933
[9]   Adaptive neural control of uncertain MIMO nonlinear systems [J].
Ge, SS ;
Wang, C .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2004, 15 (03) :674-692
[10]   Direct adaptive NN control of a class of nonlinear systems [J].
Ge, SS ;
Wang, C .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2002, 13 (01) :214-221