Microwave-excited atmospheric-pressure microplasmas based on a coaxial transmission line resonator

被引:133
作者
Choi, J. [1 ]
Iza, F. [2 ]
Do, H. J. [3 ]
Lee, J. K. [1 ]
Cho, M. H. [3 ]
机构
[1] Pohang Univ Sci & Technol, Dept Elect & Elect Engn, Pohang 790784, South Korea
[2] Univ Loughborough, Dept Elect & Elect Engn, Loughborough LE11 3TU, Leics, England
[3] Pohang Univ Sci & Technol, Dept Phys, Pohang 790784, South Korea
关键词
PLASMA SOURCE; ELECTRON; KINETICS; NEEDLE;
D O I
10.1088/0963-0252/18/2/025029
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We report the design, fabrication and characterization of two microwave-excited microplasma sources based on coaxial transmission line resonators (CTLR). The sources are capable of generating electric fields of similar to 10(6) V m(-1) at 900 MHz and 2.45 GHz. These devices can self-ignite helium or argon discharges in a wide pressure range including atmospheric pressure. The gas temperature in an argon discharge open to atmospheric air is similar to 400 K. Using air as a dielectric, the working gases can be passed through the CTLR, resulting in the formation of plasma jets suitable for surface treatments. The device efficiency on transferring the input power into the plasma is 50-85% depending on the gas used. No thermal damage or electrode erosion has been observed in the devices.
引用
收藏
页数:8
相关论文
共 29 条
[1]   Electron and ion kinetics in a DC microplasma at atmospheric pressure [J].
Choi, Jun ;
Iza, Felipe ;
Lee, Jae Koo ;
Ryu, Chang-Mo .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 2007, 35 (05) :1274-1278
[2]   Direct current plasma jet needle source [J].
Dudek, D. ;
Bibinov, N. ;
Engemann, J. ;
Awakowicz, P. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2007, 40 (23) :7367-7371
[3]   Floating electrode dielectric barrier discharge plasma in air promoting apoptotic behavior in melanoma skin cancer cell lines [J].
Fridman, Gregory ;
Shereshevsky, Alexey ;
Jost, Monika M. ;
Brooks, Ari D. ;
Fridman, Alexander ;
Gutsol, Alexander ;
Vasilets, Victor ;
Friedman, Gary .
PLASMA CHEMISTRY AND PLASMA PROCESSING, 2007, 27 (02) :163-176
[4]   Plasma ignition in a quarter-wavelength microwave slot resonator [J].
Gesche, R. ;
Kuehn, S. ;
Andrei, C. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2008, 41 (19)
[5]   Comparison of fluid and particle-in-cell simulations on atmospheric pressure helium microdischarges [J].
Hong, Y. J. ;
Yoon, M. ;
Iza, F. ;
Kim, G. C. ;
Lee, J. K. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2008, 41 (24)
[6]   Modeling high-pressure microplasmas: Comparison of fluid modeling and particle-in-cell Monte Carlo collision modeling [J].
Hong, Yong Jun ;
Lee, Seung Min ;
Kim, Gyoo Cheon ;
Lee, Jae Koo .
PLASMA PROCESSES AND POLYMERS, 2008, 5 (06) :583-592
[7]   A microfabricated atmospheric-pressure microplasma source operating in air [J].
Hopwood, J ;
Iza, F ;
Coy, S ;
Fenner, DB .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2005, 38 (11) :1698-1703
[8]   Electron kinetics in radio-frequency atmospheric-pressure microplasmas [J].
Iza, F. ;
Lee, J. K. ;
Kong, M. G. .
PHYSICAL REVIEW LETTERS, 2007, 99 (07)
[9]   Split-ring resonator microplasma: microwave model, plasma impedance and power efficiency [J].
Iza, F ;
Hopwood, J .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2005, 14 (02) :397-406
[10]   Rotational, vibrational, and excitation temperatures of a microwave-frequency microplasma [J].
Iza, F ;
Hopwood, JA .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 2004, 32 (02) :498-504