Solution-Processed Cu(In, Ga)(S, Se)2 Nanocrystal as Inorganic Hole-Transporting Material for Efficient and Stable Perovskite Solar Cells

被引:39
作者
Xu, Lu [2 ]
Deng, Lin-Long [1 ]
Cao, Jing [2 ]
Wang, Xin [1 ]
Chen, Wei-Yi [1 ]
Jiang, Zhiyuan [2 ]
机构
[1] Xiamen Univ, Pen Tung Sah Inst Micronano Sci & Technol, Xiamen 361005, Peoples R China
[2] Xiamen Univ, Dept Chem, Coll Chem & Chem Engn, State Key Lab Phys Chem Solid Surfaces, Xiamen 361005, Peoples R China
来源
NANOSCALE RESEARCH LETTERS | 2017年 / 12卷
基金
中国国家自然科学基金;
关键词
Perovskite solar cells; Hole-transporting material; CIGSSe nanocrystals; HIGH-PERFORMANCE; THIN-FILMS; LAYER; LENGTHS; IODIDE; CUINS2; OXIDE; INKS;
D O I
10.1186/s11671-017-1933-z
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Perovskite solar cells are emerging as one of the most promising candidates for solar energy harvesting. To date, most of the high-performance perovskite solar cells have exclusively employed organic hole-transporting materials (HTMs) such as 2,2', 7,7'-tetrakis-(N,N-di-p-methoxyphenylamine)-9,9'-spirobifluorene (spiro-OMeTAD) or polytriarylamine (PTAA) which are often expensive and have low hole mobility. Almost all these HTMs reported needed lithium salt, e.g., lithium bis(trifluoromethylsulfonyl) imide (Li-TFSI) doping, to improve hole mobility and performance. However, the use of Li-TFSI should be avoided because the hygroscopic nature of Li-TFSI could cause decomposition of perovskite and reduce device stability. Herein, we employed solution-processed CuIn0.1Ga0.9(S0.9Se0.1)(2) (CIGSSe) nanocrystals as a novel inorganic HTM in perovskite solar cells. A power conversion efficiency of 9.15% was obtained for CIGSSe-based devices with improved stability, compared to devices using spiro-OMeTAD as HTM. This work offers a promising candidate of Cu-based inorganic HTM for efficient and stable perovskite solar cells.
引用
收藏
页数:8
相关论文
共 46 条
[1]   Effects of Process Parameters on the Characteristics of Mixed-Halide Perovskite Solar Cells Fabricated by One-Step and Two-Step Sequential Coating [J].
Ahmadian-Yazdi, Mohammad Reza ;
Zabihi, Fatemeh ;
Habibi, Mehran ;
Eslamian, Morteza .
NANOSCALE RESEARCH LETTERS, 2016, 11
[2]   Highly Reproducible Perovskite Solar Cells with Average Efficiency of 18.3% and Best Efficiency of 19.7% Fabricated via Lewis Base Adduct of Lead(II) Iodide [J].
Ahn, Namyoung ;
Son, Dae-Yong ;
Jang, In-Hyuk ;
Kang, Seong Min ;
Choi, Mansoo ;
Park, Nam-Gyu .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (27) :8696-8699
[3]   Sequential deposition as a route to high-performance perovskite-sensitized solar cells [J].
Burschka, Julian ;
Pellet, Norman ;
Moon, Soo-Jin ;
Humphry-Baker, Robin ;
Gao, Peng ;
Nazeeruddin, Mohammad K. ;
Graetzel, Michael .
NATURE, 2013, 499 (7458) :316-+
[4]   Facile colloidal synthesis of quinary CuIn1-x,Gax(SySe1-y)2 (CIGSSe) nanocrystal inks with tunable band gaps for use in low-cost photovoltaics [J].
Chang, Shu-Hao ;
Chiang, Ming-Yi ;
Chiang, Chien-Chih ;
Yuan, Fang-Wei ;
Chen, Chia-Yu ;
Chiu, Bo-Cheng ;
Kao, Tzu-Lun ;
Lai, Chi-Huang ;
Tuan, Hsing-Yu .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (12) :4929-4932
[5]   Efficient perovskite solar cells based on low-temperature solution-processed (CH3NH3)PbI3 perovskite/CuInS2 planar heterojunctions [J].
Chen, Chong ;
Li, Chunxi ;
Li, Fumin ;
Wu, Fan ;
Tan, Furui ;
Zhai, Yong ;
Zhang, Weifeng .
NANOSCALE RESEARCH LETTERS, 2014, 9
[6]   Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers [J].
Chen, Wei ;
Wu, Yongzhen ;
Yue, Youfeng ;
Liu, Jian ;
Zhang, Wenjun ;
Yang, Xudong ;
Chen, Han ;
Bi, Enbing ;
Ashraful, Islam ;
Graetzel, Michael ;
Han, Liyuan .
SCIENCE, 2015, 350 (6263) :944-948
[7]   Low-cost solution-processed copper iodide as an alternative to PEDOT:PSS hole transport layer for efficient and stable inverted planar heterojunction perovskite solar cells [J].
Chen, Wei-Yi ;
Deng, Lin-Long ;
Dai, Si-Min ;
Wang, Xin ;
Tian, Cheng-Bo ;
Zhan, Xin-Xing ;
Xie, Su-Yuan ;
Huang, Rong-Bin ;
Zheng, Lan-Sun .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (38) :19353-19359
[8]   Thin-film solar cells: An overview [J].
Chopra, KL ;
Paulson, PD ;
Dutta, V .
PROGRESS IN PHOTOVOLTAICS, 2004, 12 (2-3) :69-92
[9]   An Inorganic Hole Conductor for Organo-Lead Halide Perovskite Solar Cells. Improved Hole Conductivity with Copper Iodide [J].
Christians, Jeffrey A. ;
Fung, Raymond C. M. ;
Kamat, Prashant V. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (02) :758-764
[10]   High efficiency CH3NH3PbI(3-x)Clx, perovskite solar cells with poly(3-hexylthiophene) hole transport layer [J].
Di Giacomo, Francesco ;
Razza, Stefano ;
Matteocci, Fabio ;
D'Epifanio, Alessandra ;
Licoccia, Silvia ;
Brown, Thomas M. ;
Di Carlo, Aldo .
JOURNAL OF POWER SOURCES, 2014, 251 :152-156