AN INVERSE PROBLEM OF CALIBRATING VOLATILITY IN JUMP-DIFFUSION OPTION PRICING MODELS1

被引:0
作者
Jin, Chang [1 ]
Ma, Qing-Hua [1 ]
Xu, Zuo-Liang [1 ]
机构
[1] Renmin Univ China, Beijing 100872, Peoples R China
来源
BOUNDARY VALUE PROBLEMS, INTEGRAL EQUATIONS AND RELATED PROBLEMS | 2011年
关键词
Gauss-Newton method; jump diffusion model; relative entropy; regularization; volatility;
D O I
10.1142/9789814327862_0009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper mainly concerns calibrating volatility from a jump diffusion model to a finite set of observed option pricing. We proposed a regularization algorithm based on Cont and Tankov's relative entropy regularization to solve this problem. We determine the regularization parameter using quasi-optimality criterion with original data error level unknown. Iteratively Guass-Newton method is developed for solving the unconstrained optimization problem. Finally, the theoretical results are illustrated by numerical experiments.
引用
收藏
页码:102 / 112
页数:11
相关论文
共 9 条
[1]  
Andersen L., 2000, Review of derivatives research, V4, P231
[2]  
[Anonymous], 2000, MATH ITS APPL
[3]  
Avellaneda M., 1997, Appl Math Finance, V4, P37, DOI DOI 10.1080/135048697334827
[4]  
Bakushinsky A., 1994, ILL POSED PROBLEMS T
[5]  
Bertoin J., 2010, IEVY PROCESSES
[6]  
Carr P, 1999, J COMPUT FINANC, V2, P61, DOI DOI 10.21314/JCF.1999.043
[7]  
Cont Rama, 2004, The Journal of Computational Finance, V7, P1
[8]   OPTION PRICING WHEN UNDERLYING STOCK RETURNS ARE DISCONTINUOUS [J].
MERTON, RC .
JOURNAL OF FINANCIAL ECONOMICS, 1976, 3 (1-2) :125-144
[9]  
SATO K., 2013, Cambridge Studies in Advanced Mathematics, V68