Selective Equilibration of Spin-Polarized Quantum Hall Edge States in Graphene

被引:79
作者
Amet, F. [1 ]
Williams, J. R. [2 ]
Watanabe, K. [3 ]
Taniguchi, T. [3 ]
Goldhaber-Gordon, D. [2 ]
机构
[1] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Phys, Stanford, CA 94305 USA
[3] Natl Inst Mat Sci, Adv Mat Lab, Tsukuba, Ibaraki 3050044, Japan
关键词
ELECTRONIC-PROPERTIES; MAGNETIC-FIELD; TRANSPORT;
D O I
10.1103/PhysRevLett.112.196601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We report on transport measurements of dual-gated, single-layer graphene devices in the quantum Hall regime, allowing for independent control of the filling factors in adjoining regions. Progress in device quality allows us to study scattering between edge states when the fourfold degeneracy of the Landau level is lifted by electron correlations, causing edge states to be spin and/or valley polarized. In this new regime, we observe a dramatic departure from the equilibration seen in more disordered devices: edge states with opposite spins propagate without mixing. As a result, the degree of equilibration inferred from transport can reveal the spin polarization of the ground state at each filling factor. In particular, the first Landau level is shown to be spin polarized at half filling, providing an independent confirmation of a conclusion of Young et al. [Nat. Phys. 8, 550 (2012)]. The conductance in the bipolar regime is strongly suppressed, indicating that copropagating edge states, even with the same spin, do not equilibrate along PN interfaces. We attribute this behavior to the formation of an insulating nu = 0 stripe at the PN interface.
引用
收藏
页数:5
相关论文
共 33 条
[1]   Quantized transport in graphene p-n junctions in a magnetic field [J].
Abanin, D. A. ;
Levitov, L. S. .
SCIENCE, 2007, 317 (5838) :641-643
[2]   Spin-filtered edge states and quantum hall effect in graphene [J].
Abanin, DA ;
Lee, PA ;
Levitov, LS .
PHYSICAL REVIEW LETTERS, 2006, 96 (17)
[3]   Dissipative quantum Hall effect in graphene near the Dirac point [J].
Abanin, Dmitry A. ;
Novoselov, Kostya S. ;
Zeitler, Uli ;
Lee, Patrick A. ;
Geim, A. K. ;
Levitov, L. S. .
PHYSICAL REVIEW LETTERS, 2007, 98 (19)
[4]   Interplay between lattice-scale physics and the quantum Hall effect in graphene [J].
Alicea, Jason ;
Fisher, Matthew P. A. .
SOLID STATE COMMUNICATIONS, 2007, 143 (11-12) :504-509
[5]   Graphene integer quantum Hall effect in the ferromagnetic and paramagnetic regimes [J].
Alicea, Jason ;
Fisher, Matthew P. A. .
PHYSICAL REVIEW B, 2006, 74 (07)
[6]   Insulating Behavior at the Neutrality Point in Single-Layer Graphene [J].
Amet, F. ;
Williams, J. R. ;
Watanabe, K. ;
Taniguchi, T. ;
Goldhaber-Gordon, D. .
PHYSICAL REVIEW LETTERS, 2013, 110 (21)
[7]   Quantum Hall effects in graphene-based two-dimensional electron systems [J].
Barlas, Yafis ;
Yang, Kun ;
MacDonald, A. H. .
NANOTECHNOLOGY, 2012, 23 (05)
[8]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[9]   Two point-contact interferometer for quantum Hall systems [J].
Chamon, CDC ;
Freed, DE ;
Kivelson, SA ;
Sondhi, SL ;
Wen, XG .
PHYSICAL REVIEW B, 1997, 55 (04) :2331-2343
[10]   Zero-energy state in graphene in a high magnetic field [J].
Checkelsky, Joseph G. ;
Li, Lu ;
Ong, N. P. .
PHYSICAL REVIEW LETTERS, 2008, 100 (20)