Competing Channels for Hot-Electron Cooling in Graphene

被引:78
作者
Ma, Qiong [1 ]
Gabor, Nathaniel M. [1 ]
Andersen, Trond I. [1 ]
Nair, Nityan L. [1 ]
Watanabe, Kenji [2 ]
Taniguchi, Takashi [2 ]
Jarillo-Herrero, Pablo [1 ]
机构
[1] MIT, Dept Phys, Cambridge, MA 02139 USA
[2] Natl Inst Mat Sci, Tsukuba, Ibaraki 3050044, Japan
基金
美国国家科学基金会;
关键词
PHOTOCURRENT; GENERATION; RELAXATION; TRANSPORT; DYNAMICS;
D O I
10.1103/PhysRevLett.112.247401
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We report on temperature-dependent photocurrent measurements of high-quality dual-gated monolayer graphene p-n junction devices. A photothermoelectric effect governs the photocurrent response in our devices, allowing us to track the hot-electron temperature and probe hot-electron cooling channels over a wide temperature range (4 to 300 K). At high temperatures (T > T*), we found that both the peak photocurrent and the hot spot size decreased with temperature, while at low temperatures (T < T*), we found the opposite, namely that the peak photocurrent and the hot spot size increased with temperature. This nonmonotonic temperature dependence can be understood as resulting from the competition between two hot-electron cooling pathways: (a) (intrinsic) momentum-conserving normal collisions that dominates at low temperatures and (b) (extrinsic) disorder-assisted supercollisions that dominates at high temperatures. Gate control in our high-quality samples allows us to resolve the two processes in the same device for the first time. The peak temperature T* depends on carrier density and disorder concentration, thus allowing for an unprecedented way of controlling graphene's photoresponse.
引用
收藏
页数:5
相关论文
共 35 条
[1]   Supercollision cooling in undoped graphene [J].
Betz, A. C. ;
Jhang, S. H. ;
Pallecchi, E. ;
Ferreira, R. ;
Feve, G. ;
Berroir, J-M. ;
Placais, B. .
NATURE PHYSICS, 2013, 9 (02) :109-112
[2]   Electronic Cooling in Graphene [J].
Bistritzer, R. ;
MacDonald, A. H. .
PHYSICAL REVIEW LETTERS, 2009, 102 (20)
[3]  
Cho S, 2013, NAT MATER, V12, P913, DOI [10.1038/nmat3708, 10.1038/NMAT3708]
[4]   Measurement of ultrafast carrier dynamics in epitaxial graphene [J].
Dawlaty, Jahan M. ;
Shivaraman, Shriram ;
Chandrashekhar, Mvs ;
Rana, Farhan ;
Spencer, Michael G. .
APPLIED PHYSICS LETTERS, 2008, 92 (04)
[5]   Photothermoelectric and Photoelectric Contributions to Light Detection in Metal-Graphene-Metal Photodetectors [J].
Echtermeyer, T. J. ;
Nene, P. S. ;
Trushin, M. ;
Gorbachev, R. V. ;
Eiden, A. L. ;
Milana, S. ;
Sun, Z. ;
Schliemann, J. ;
Lidorikis, E. ;
Novoselov, K. S. ;
Ferrari, A. C. .
NANO LETTERS, 2014, 14 (07) :3733-3742
[6]   Substrate-limited electron dynamics in graphene [J].
Fratini, S. ;
Guinea, F. .
PHYSICAL REVIEW B, 2008, 77 (19)
[7]   Increased Responsivity of Suspended Graphene Photodetectors [J].
Freitag, Marcus ;
Low, Tony ;
Avouris, Phaedon .
NANO LETTERS, 2013, 13 (04) :1644-1648
[8]   Hot Carrier-Assisted Intrinsic Photoresponse in Graphene [J].
Gabor, Nathaniel M. ;
Song, Justin C. W. ;
Ma, Qiong ;
Nair, Nityan L. ;
Taychatanapat, Thiti ;
Watanabe, Kenji ;
Taniguchi, Takashi ;
Levitov, Leonid S. ;
Jarillo-Herrero, Pablo .
SCIENCE, 2011, 334 (6056) :648-652
[9]   Ultrafast Optical-Pump Terahertz-Probe Spectroscopy of the Carrier Relaxation and Recombination Dynamics in Epitaxial Graphene [J].
George, Paul A. ;
Strait, Jared ;
Dawlaty, Jahan ;
Shivaraman, Shriram ;
Chandrashekhar, Mvs ;
Rana, Farhan ;
Spencer, Michael G. .
NANO LETTERS, 2008, 8 (12) :4248-4251
[10]   Transient Absorption and Photocurrent Microscopy Show That Hot Electron Supercollisions Describe the Rate-Limiting Relaxation Step in Graphene [J].
Graham, Matt W. ;
Shi, Su-Fei ;
Wang, Zenghui ;
Ralph, Daniel C. ;
Park, Jiwoong ;
McEuen, Paul L. .
NANO LETTERS, 2013, 13 (11) :5497-5502