Operando MAS NMR Reaction Studies at High Temperatures and Pressures

被引:56
作者
Walter, Eric D. [1 ]
Qi, Long [2 ,3 ,4 ]
Chamas, Ali [2 ]
Mehta, Hardeep S. [1 ]
Sears, Jesse A. [1 ]
Scott, Susannah L. [2 ,3 ]
Hoyt, David W. [1 ]
机构
[1] Pacific Northwest Natl Lab, Environm Mol Sci Lab, Richland, WA 99354 USA
[2] Univ Calif Santa Barbara, Dept Chem & Biochem, Santa Barbara, CA 93106 USA
[3] Univ Calif Santa Barbara, Dept Chem Engn, Santa Barbara, CA 93106 USA
[4] Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA
基金
美国国家科学基金会;
关键词
NUCLEAR-MAGNETIC-RESONANCE; SUPERCRITICAL CO2; ARYL ETHERS; CATALYSTS; HYDROGENATION; CARBONATION; NICKEL; MODEL; THERMOMETER; ADSORPTION;
D O I
10.1021/acs.jpcc.7b11442
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Operand MAS NMR studies provide unique insights into the details of chemical reactions; comprehensive information about temperature- and time-dependent changes in chemical species is accompanied by similarly rich information about changes in phase and chemical environment. Here we describe a new MAS NMR rotor (the WHiMS rotor) capable of achieving internal pressures up to 400 bar at 20 degrees C or 225 bar at 250 degrees C, a range that includes many reactions of interest. The MAS NMR spectroscopy enabled by these rotors is ideal for studying the behavior of mixed-phase systems, such as reactions involving solid catalysts and volatile liquids, with the potential to add gases at high pressure. The versatile operation of the new rotors is demonstrated by collecting operando H-1 and C-13 spectra during the hydrogenolysis of benzyl phenyl ether, catalyzed by Ni/gamma-Al2O3 at ca. 250 degrees C, both with and without H-2 (g) supplied to the rotor. The 2-propanol solvent, which exists in the supercritical phase under these reaction conditions, serves as an internal source of H-2. The NMR spectra provide detailed kinetic profiles for the formation of the primary products toluene and phenol as well as secondary hydrogenation and etherification products.
引用
收藏
页码:8209 / 8215
页数:7
相关论文
共 41 条
  • [1] Aizawa T., 1998, KOATSURYOKU NO KAGAK, V7, P1426
  • [2] A SIMPLE MULTI-NUCLEAR NMR THERMOMETER
    AMMANN, C
    MEIER, P
    MERBACH, AE
    [J]. JOURNAL OF MAGNETIC RESONANCE, 1982, 46 (02) : 319 - 321
  • [3] TEMPERATURE-DEPENDENCE OF PB-207 MAS SPECTRA OF SOLID LEAD NITRATE - AN ACCURATE, SENSITIVE THERMOMETER FOR VARIABLE-TEMPERATURE MAS
    BIELECKI, A
    BURUM, DP
    [J]. JOURNAL OF MAGNETIC RESONANCE SERIES A, 1995, 116 (02) : 215 - 220
  • [4] Role of Cations in CO2 Adsorption, Dynamics, and Hydration in Smectite Clays under in Situ Supercritical CO2 Conditions
    Bowers, Geoffrey M.
    Schaef, H. Todd
    Loring, John S.
    Hoyt, David W.
    Burton, Sarah D.
    Walter, Eric D.
    Kirkpatrick, R. James
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (01) : 577 - 592
  • [5] In Situ 13C and 23Na Magic Angle Spinning NMR Investigation of Supercritical CO2 Incorporation in Smectite-Natural Organic Matter Composites
    Bowers, Geoffrey M.
    Hoyt, David W.
    Burton, Sarah D.
    Ferguson, Brennan O.
    Varga, Tamas
    Kirkpatrick, R. James
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (07) : 3564 - 3573
  • [6] NMR Flow Tube for Online NMR Reaction Monitoring
    Foley, David A.
    Bez, Eckhard
    Codina, Anna
    Colson, Kimberly L.
    Fey, Michael
    Krull, Robert
    Piroli, Don
    Zell, Mark T.
    Marquez, Brian L.
    [J]. ANALYTICAL CHEMISTRY, 2014, 86 (24) : 12008 - 12013
  • [7] Nickel on alumina catalysts for the production of hydrogen rich mixtures via the biogas dry reforming reaction: Influence of the synthesis method
    Goula, Maria A.
    Charisiou, Nikolaos D.
    Papageridis, Kiriakos N.
    Delimitis, Andreas
    Pachatouridou, Eleni
    Iliopoulou, Eleni F.
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2015, 40 (30) : 9183 - 9200
  • [8] Temperature dependence of the 1H chemical shift of tetramethylsilane in chloroform, methanol, and dimethylsulfoxide
    Hoffman, RE
    Becker, ED
    [J]. JOURNAL OF MAGNETIC RESONANCE, 2005, 176 (01) : 87 - 98
  • [9] Hoyt D. W., 2014, Patent No. [8,692,548, 8692548]
  • [10] Hoyt D. W., 2017, U. S. Patent, Patent No. [9,835,698, 9835698]