A new low-temperature synthesis and electrochemical properties of LiV3O8 hydrate as cathode material for lithium-ion batteries

被引:27
作者
Feng, Yan [1 ]
Hou, Feng [1 ]
Li, Yali [1 ]
机构
[1] Tianjin Univ, Key Lab Adv Ceram & Machining Tech, Chinese Educ Minist, Sch Mat Sci & Engn, Tianjin 30072, Peoples R China
关键词
LiV3O8; Cathode materials; Low-temperature synthesis; Lithium-ion battery; PERFORMANCE; IMPROVEMENT; LI1.1V3O8; PHASE; GEL;
D O I
10.1016/j.jpowsour.2009.02.079
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
LiV3O8, synthesized from V2O5 and LiOH, by heating of a suspension Of V2O5 in a LiOH solution at a low-temperature (100-200 degrees), exhibits a high discharge capacity and excellent cyclic stability at a high current density as a cathode material of lithium-ion battery. The charge-discharge curve shows a maximum discharge capacity of 228.6 mAh g(-1) at a current density of 150 mA g(-1) (0.5 C rate) and the 100 cycles discharge capacity remains 215 mAh g(-1). X-ray diffraction indicates the low degree of crystallinity and expanding of inter-plane distance of the LiV3O8 phase, and scanning electronic microscopy reveals the formation of nano-domain structures in the products, which account for the enhanced electrochemical performance. In contrast, the LiV3O8 phase formed at a higher temperature (300 degrees C) consists of well-developed crystal phases, and coherently, results in a distinct reduction of discharge capacity with cycle numbers, Thus, an enhanced electrochemical performance has been achieved for LiV3O8 by the soft chemical method via a low-temperature heating process. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:708 / 713
页数:6
相关论文
共 50 条
  • [31] Synthesis and electrochemical properties of submicron sized sheet-like LiV3O8 crystallites for lithium secondary batteries
    Wang, Dunqiang
    Cao, Liyun
    Huang, Jianfeng
    Wu, Jianpeng
    MATERIALS LETTERS, 2012, 71 : 48 - 50
  • [32] LiV3O8/Polytriphenylamine Composites with Enhanced Electrochemical Performances as Cathode Materials for Rechargeable Lithium Batteries
    Li, Wenjuan
    Zhu, Limin
    Yu, Ziheng
    Xie, Lingling
    Cao, Xiaoyu
    MATERIALS, 2017, 10 (04):
  • [33] Cathode Materials Based on LiV3O8 Nanostructures for Sodium-Ion Batteries
    Niu, Yu
    Xie, Lingling
    Zhou, Tao
    Xu, Jing
    Ding, Youchi
    Han, Qing
    Qiu, Xuejing
    Xiao, Yongmei
    Miao, Yongxia
    Zhu, Limin
    Cao, Xiaoyu
    ACS APPLIED NANO MATERIALS, 2023, 6 (01) : 622 - 632
  • [34] Preparation of ZnO-Coated LiV3O8 as Cathode Materials for Rechargeable Lithium Batteries
    Cao, Xiao-Yu
    Guo, Li-Jing
    Liu, Jian-Ping
    Xie, Ling-Ling
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2011, 6 (02): : 270 - 278
  • [35] Electrochemical Performance of LiV3O8 Micro-Rod at Various Calcination Temperatures as Cathode Materials for Lithium Ion Batteries
    Noerochim, Lukman
    Ginanjar, Edith Setia
    Susanti, Diah
    Prihandoko, Bambang
    PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON MATERIALS AND METALLURGICAL ENGINEERING AND TECHNOLOGY (ICOMMET 2017): ADVANCING INNOVATION IN MATERIALS SCIENCE, TECHNOLOGY AND APPLICATIONS FOR SUSTAINABLE FUTURE, 2018, 1945
  • [36] LiV3O8 nanorods as cathode materials for high-power and long-life rechargeable lithium-ion batteries
    Mei, Peng
    Wu, Xing-Long
    Xie, Haiming
    Sun, Liqun
    Zeng, Yanping
    Zhang, Jingping
    Tai, Linghua
    Guo, Xin
    Cong, Lina
    Ma, Shunchao
    Yao, Cen
    Wang, Rongshun
    RSC ADVANCES, 2014, 4 (49): : 25494 - 25501
  • [37] Electrochemical properties of submicron-sized LiV3O8 synthesized by a low-temperature reaction route
    Liu, Li
    Jiao, Lifang
    Sun, Junli
    Zhang, Yanhui
    Zhao, Ming
    Yuan, Huatang
    Wang, Yongmei
    JOURNAL OF ALLOYS AND COMPOUNDS, 2009, 471 (1-2) : 352 - 356
  • [38] Synthesis and electrochemical performances of LiV3O8/poly (3, 4-ethylenedioxythiophene) composites as cathode materials for rechargeable lithium batteries
    Zhu, Limin
    Li, Wenjuan
    Yu, Zihenq
    Xie, Lingling
    Cao, Xiaoyu
    SOLID STATE IONICS, 2017, 310 : 30 - 37
  • [39] LiV3O8 nanowires with excellent stability for aqueous rechargeable lithium batteries
    Liu, Jingang
    Yi, Lukai
    Liu, Li
    Peng, Peng
    MATERIALS CHEMISTRY AND PHYSICS, 2015, 161 : 211 - 218
  • [40] Morphological and electrochemical properties of LiV3O8 cathode powders prepared by spray pyrolysis
    Ju, S. H.
    Kang, Y. C.
    ELECTROCHIMICA ACTA, 2010, 55 (20) : 6088 - 6092