A new low-temperature synthesis and electrochemical properties of LiV3O8 hydrate as cathode material for lithium-ion batteries

被引:27
作者
Feng, Yan [1 ]
Hou, Feng [1 ]
Li, Yali [1 ]
机构
[1] Tianjin Univ, Key Lab Adv Ceram & Machining Tech, Chinese Educ Minist, Sch Mat Sci & Engn, Tianjin 30072, Peoples R China
关键词
LiV3O8; Cathode materials; Low-temperature synthesis; Lithium-ion battery; PERFORMANCE; IMPROVEMENT; LI1.1V3O8; PHASE; GEL;
D O I
10.1016/j.jpowsour.2009.02.079
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
LiV3O8, synthesized from V2O5 and LiOH, by heating of a suspension Of V2O5 in a LiOH solution at a low-temperature (100-200 degrees), exhibits a high discharge capacity and excellent cyclic stability at a high current density as a cathode material of lithium-ion battery. The charge-discharge curve shows a maximum discharge capacity of 228.6 mAh g(-1) at a current density of 150 mA g(-1) (0.5 C rate) and the 100 cycles discharge capacity remains 215 mAh g(-1). X-ray diffraction indicates the low degree of crystallinity and expanding of inter-plane distance of the LiV3O8 phase, and scanning electronic microscopy reveals the formation of nano-domain structures in the products, which account for the enhanced electrochemical performance. In contrast, the LiV3O8 phase formed at a higher temperature (300 degrees C) consists of well-developed crystal phases, and coherently, results in a distinct reduction of discharge capacity with cycle numbers, Thus, an enhanced electrochemical performance has been achieved for LiV3O8 by the soft chemical method via a low-temperature heating process. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:708 / 713
页数:6
相关论文
共 50 条
  • [1] Study on ultrafast synthesis of LiV3O8 cathode material for lithium-ion batteries
    Xiong, Xunhui
    Wang, Zhixing
    Li, Xinhai
    Guo, Huajun
    MATERIALS LETTERS, 2012, 76 : 8 - 10
  • [2] Preparation and electrochemical properties of Zr-doped LiV3O8 cathode materials for lithium-ion batteries
    Ren, Xiangzhong
    Hu, Shengming
    Shi, Chuan
    Zhang, Peixin
    Yuan, Qiuhua
    Liu, Jianhong
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2012, 16 (06) : 2135 - 2141
  • [3] Preparation and electrochemical properties of Cr doped LiV3O8 cathode for lithium ion batteries
    Feng, Yan
    Li, Yali
    Hou, Feng
    MATERIALS LETTERS, 2009, 63 (15) : 1338 - 1340
  • [4] LiV3O8 and Graphene Oxide Nanocomposite as a Cathode in Lithium-Ion Batteries
    Jiang, Rong
    Ding, Zhiwei
    Huang, Junyuan
    Xie, Yuan
    Wen, Jia
    Ren, Yang
    Liu, Zhu
    Xiao, Bowen
    Zhou, Xiaowei
    ACS APPLIED NANO MATERIALS, 2023, 6 (21) : 20258 - 20268
  • [5] Low-temperature synthesis of LiV3O8 nanosheets as an anode material with high power density for aqueous lithium-ion batteries
    Heli, H.
    Yadegari, H.
    Jabbari, A.
    MATERIALS CHEMISTRY AND PHYSICS, 2011, 126 (03) : 476 - 479
  • [6] Synthesis and Electrochemical Properties of LiV3O8/PAn Composite as a Cathode Material for Lithium Secondary Batteries
    Xie, Ling-Ling
    Cao, Xiao-Yu
    Zhang, Li-Xu
    Dai, Zhong-Xu
    Qu, Ling-Bo
    ELECTRONIC MATERIALS LETTERS, 2013, 9 (02) : 183 - 186
  • [7] Electrochemical behavior and structural stability of LiV3O8 microrods as cathode for lithium-ion batteries
    Wang, Pan-Pan
    Xu, Cheng-Yan
    Wang, Long
    Zhang, Bao-You
    Zhen, Liang
    CERAMICS INTERNATIONAL, 2016, 42 (16) : 18747 - 18755
  • [8] Preparation and electrochemical properties of Zr-doped LiV3O8 cathode materials for lithium-ion batteries
    Xiangzhong Ren
    Shengming Hu
    Chuan Shi
    Peixin Zhang
    Qiuhua Yuan
    Jianhong Liu
    Journal of Solid State Electrochemistry, 2012, 16 : 2135 - 2141
  • [9] Synthesis of LiV3O8 nanocrystallites as cathode materials for lithium ion batteries
    Yang, Hui
    Li, Juan
    Zhang, Xiao-gang
    Jin, Yong-li
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2008, 207 (1-3) : 265 - 270
  • [10] Enhanced electrochemical properties of Al2O3-coated LiV3O8 cathode materials for high-power lithium-ion batteries
    Huang, S.
    Tu, J. P.
    Jian, X. M.
    Lu, Y.
    Shi, S. J.
    Zhao, X. Y.
    Wang, T. Q.
    Wang, X. L.
    Gu, C. D.
    JOURNAL OF POWER SOURCES, 2014, 245 : 698 - 705