Bio-Inspired Design of Bi/Tridirectionally Anisotropic Sliding Superhydrophobic Titanium Alloy Surfaces

被引:23
|
作者
Xu, Jinkai [1 ]
Hou, Yonggang [1 ]
Lian, Zhongxu [1 ]
Yu, Zhanjiang [1 ]
Wang, Zuobin [1 ,2 ]
Yu, Huadong [1 ]
机构
[1] Changchun Univ Sci & Technol, Minist Educ, Key Lab Cross Scale Micro & Nano Mfg, Changchun 130022, Peoples R China
[2] Changchun Univ Sci & Technol, Int Res Ctr Nano Handling & Mfg China, Changchun 130022, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
three-level structure; titanium alloy; superhydrophobic; anisotropic sliding; WETTING PROPERTIES; METALLIC SURFACES; FABRICATION; ADHESION;
D O I
10.3390/nano10112140
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Many biological surfaces with the multi-scale microstructure show obvious anisotropic wetting characteristics, which have many potential applications in microfluidic systems, biomedicine, and biological excitation systems. However, it is still a challenge to accurately prepare a metal microstructured surface with multidirectional anisotropy using a simple but effective method. In this paper, inspired by the microstructures of rice leaves and butterfly wings, wire electrical discharge machining was used to build dual-level (submillimeter/micrometer) periodic groove structures on the surface of titanium alloy, and then a nanometer structure was obtained after alkali-hydrothermal reaction, forming a three-level (submillimeter/micrometer/nanometer) structure. The surface shows the obvious difference of bidirectional superhydrophobic and tridirectional anisotropic sliding after modification, and the special wettability is easily adjusted by changing the spacing and angle of the inclined groove. In addition, the results indicate that the ability of water droplets to spread along parallel and perpendicular directions on the submillimeter groove structure and the different resistances generated by the inclined groove surface are the main reasons for the multi-anisotropic wettability. The research gives insights into the potential applications of metal materials with multidirectional anisotropic wetting properties.
引用
收藏
页码:1 / 17
页数:17
相关论文
共 50 条
  • [21] Effective cleanup of oil contamination on bio-inspired superhydrophobic surface
    Qin Zhou
    Leyang Wang
    Qi Xu
    Yuan Zhao
    Environmental Science and Pollution Research, 2019, 26 : 21321 - 21328
  • [22] Preparation of anisotropic superhydrophobic titanium alloy surface and analysis of droplet icing performance
    Wang, Yu-Ke
    Li, Jie
    Guo, Yun-Jie
    Fu, Shuo
    Lu, Yan-Ning
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2025, 711
  • [23] A brief review on bio-inspired superhydrophobic electrodeposited nickel coatings
    Rudnik, E.
    Chat, K.
    TRANSACTIONS OF THE INSTITUTE OF METAL FINISHING, 2018, 96 (04): : 185 - 192
  • [24] Effective cleanup of oil contamination on bio-inspired superhydrophobic surface
    Zhou, Qin
    Wang, Leyang
    Xu, Qi
    Zhao, Yuan
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2019, 26 (21) : 21321 - 21328
  • [25] Laser-Structured Graphene/Reduced Graphene Oxide Films towards Bio-Inspired Superhydrophobic Surfaces
    Li, Mu-Tian
    Liu, Monan
    Yu, Yan-Hao
    Li, Ai-Wu
    Sun, Hong-Bo
    BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, 2019, 92 (02) : 283 - 289
  • [26] Bio-inspired special wetting surfaces via self-assembly
    Jin Xu
    Yang Shuai
    Li Zhou
    Liu KeSong
    Jiang Lei
    SCIENCE CHINA-CHEMISTRY, 2012, 55 (11) : 2327 - 2333
  • [27] Advances in Bio-inspired Smart Surfaces with Special Wettability
    Du Chen-Guang
    Xia Fan
    Wang Shu-Tao
    Wang Jing-Xia
    Song Yan-Lin
    Jiang Lei
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2010, 31 (03): : 421 - 431
  • [28] Bio-inspired superhydrophobic and superoleophilic nanofibrous membranes for non-aqueous solvent and oil separation from water
    Shahabadi, Seyed Mandi Seyed
    Brant, Jonathan A.
    SEPARATION AND PURIFICATION TECHNOLOGY, 2019, 210 : 587 - 599
  • [29] A computational study of adhesive properties of bio-inspired surfaces
    Lu, Hongsheng
    Zhu, Pengzhe
    Li, Rao
    MATERIALS TODAY COMMUNICATIONS, 2023, 34
  • [30] Bio-Inspired Superhydrophobic Polyphenylene Sulfide/Polytetrafluoroethylene Coatings with High Performance
    Sun, Na
    Qin, Shan
    Wu, Juntao
    Cong, Chuanbo
    Qiao, Yucong
    Zhou, Qiong
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2012, 12 (09) : 7222 - 7225