Splice variants of the human ZC3H14 gene generate multiple isoforms of a zinc finger polyadenosine RNA binding protein

被引:38
作者
Leung, Sara W. [1 ]
Apponi, Luciano H. [2 ]
Cornejo, Omar E. [3 ]
Kitchen, Chad M. [2 ,4 ]
Valentini, Sandro R. [5 ]
Pavlath, Grace K. [2 ]
Dunham, Christine M. [1 ]
Corbett, Anita H. [1 ]
机构
[1] Emory Univ, Sch Med, Dept Biochem, Atlanta, GA 30322 USA
[2] Emory Univ, Sch Med, Dept Pharmacol, Atlanta, GA 30322 USA
[3] Emory Univ, Sch Med, Grad Program Populat Biol Ecol & Evolut, Atlanta, GA 30322 USA
[4] Emory Univ, Sch Med, Program Mol & Syst Pharmacol, Atlanta, GA 30322 USA
[5] Sao Paulo State Univ, UNESP, Sch Pharmaceut Sci, Dept Biol Sci, BR-14801902 Araraquara, SP, Brazil
关键词
mRNA processing/export; Poly(A) binding proteins; S. cerevisiae Nab2; Nuclear speckle; Alternative splicing; Post-transcriptional regulation of gene expression; YEAST POLY(A)-BINDING PROTEIN; TRANSLATION INITIATION-FACTOR; NUCLEAR-PORE COMPLEX; MESSENGER-RNA; SACCHAROMYCES-CEREVISIAE; SEQUENCE ALIGNMENT; CELL VIABILITY; NMR SYSTEM; CLUSTAL-W; EXPORT;
D O I
10.1016/j.gene.2009.02.022
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
The human ZC3H14 gene encodes an evolutionarily conserved Cys(3)His zinc finger protein that binds specifically to polyadenosine RNA and is thus postulated to modulate post-transcriptional gene expression. Expressed sequence tag (EST) data predicts multiple splice variants of both human and mouse ZC3H14. Analysis of ZC3H14 expression in both human cell lines and mouse tissues confirms the presence of multiple alternatively spliced transcripts. Although all of these transcripts encode protein isoforms that contain the conserved C-terminal zinc finger domain, suggesting that they could all bind to polyadenosine RNA, they differ in other functionally important domains. Most of the alternative transcripts encode closely related proteins (termed isoforms 1, 2. 3, and 3short) that differ primarily in the inclusion of three small exons, 9, 10, and 11, resulting in predicted protein isoforms ranging from 82 to 64 kDa. Each of these closely related isoforms contains predicted classical nuclear localization signals (cNLS) within exons 7 and 11. Consistent with the presence of these putative nuclear targeting signals, these ZC3H14 isoforms are all localized to the nucleus. In contrast, an additional transcript encodes a smaller protein (34 kDa) with an alternative first exon (isoform, 4). Consistent with the absence of the predicted cNLS motifs located in exons 7 and 11, ZC3H14 isoform 4 is localized to the cytoplasm. Both EST data and experimental data suggest that this variant is enriched in testes and brain. Using an antibody that detects endogenous ZC3H14 isoforms 1-3 reveals localization of these isoforms to nuclear speckles. These speckles co-localize with the splicing factor, SC35, suggesting a role for nuclear ZC3H14 in mRNA processing. Taken together, these results demonstrate that multiple transcripts encoding several ZC3H14 isoforms exist in vivo. Both nuclear and cytoplasmic ZC3H14 isoforms could have distinct effects on gene expression mediated by the common Cys(3)His zinc finger polyadenosine RNA binding domain. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:71 / 78
页数:8
相关论文
共 53 条
[1]   MESSENGER-RNA POLYADENYLATE-BINDING PROTEIN - GENE ISOLATION AND SEQUENCING AND IDENTIFICATION OF A RIBONUCLEOPROTEIN CONSENSUS SEQUENCE [J].
ADAM, SA ;
NAKAGAWA, T ;
SWANSON, MS ;
WOODRUFF, TK ;
DREYFUSS, G .
MOLECULAR AND CELLULAR BIOLOGY, 1986, 6 (08) :2932-2943
[2]   Kap104p: A karyopherin involved in the nuclear transport of messenger RNA binding proteins [J].
Aitchison, JD ;
Blobel, G ;
Rout, MP .
SCIENCE, 1996, 274 (5287) :624-627
[3]   Yeast Pab1 interacts with Rna15 and participates in the control of the poly(A) tail length in vitro [J].
Amrani, N ;
Minet, M ;
LeGouar, M ;
Lacroute, F ;
Wyers, F .
MOLECULAR AND CELLULAR BIOLOGY, 1997, 17 (07) :3694-3701
[4]   NAB2 - A YEAST NUCLEAR POLYADENYLATED RNA-BINDING PROTEIN ESSENTIAL FOR CELL VIABILITY [J].
ANDERSON, JT ;
WILSON, SM ;
DATAR, KV ;
SWANSON, MS .
MOLECULAR AND CELLULAR BIOLOGY, 1993, 13 (05) :2730-2741
[5]   An interaction between two RNA binding proteins, Nab2 and Pub1, links mRNA Processing/Export and mRNA stability [J].
Apponi, Luciano H. ;
Kelly, Seth M. ;
Harreman, Michelle T. ;
Lehner, Alexander N. ;
Corbett, Anita H. ;
Valentini, Sandro R. .
MOLECULAR AND CELLULAR BIOLOGY, 2007, 27 (18) :6569-6579
[6]   The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling [J].
Arnold, K ;
Bordoli, L ;
Kopp, J ;
Schwede, T .
BIOINFORMATICS, 2006, 22 (02) :195-201
[7]   Yeast poly(A)-binding protein Pab1 shuttles between the nucleus and the cytoplasm and functions in mRNA export [J].
Brune, C ;
Munchel, SE ;
Fischer, N ;
Podtelejnikov, AV ;
Weis, K .
RNA, 2005, 11 (04) :517-531
[8]   Crystallography & NMR system:: A new software suite for macromolecular structure determination [J].
Brunger, AT ;
Adams, PD ;
Clore, GM ;
DeLano, WL ;
Gros, P ;
Grosse-Kunstleve, RW ;
Jiang, JS ;
Kuszewski, J ;
Nilges, M ;
Pannu, NS ;
Read, RJ ;
Rice, LM ;
Simonson, T ;
Warren, GL .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1998, 54 :905-921
[9]   Version 1.2 of the Crystallography and NMR system [J].
Brunger, Axel T. .
NATURE PROTOCOLS, 2007, 2 (11) :2728-2733
[10]   Mechanisms and control of mRNA turnover in Saccharomyces cerevisiae [J].
Caponigro, G ;
Parker, R .
MICROBIOLOGICAL REVIEWS, 1996, 60 (01) :233-+