Coarsening of metal oxide nanoparticles

被引:129
|
作者
Oskam, G
Hu, ZS
Penn, RL
Pesika, N
Searson, PC [1 ]
机构
[1] Johns Hopkins Univ, Dept Mat Sci & Engn, Baltimore, MD 21218 USA
[2] Johns Hopkins Univ, Dept Earth & Planetary Sci Sci & Engn, Baltimore, MD 21218 USA
[3] Johns Hopkins Univ, Dept Chem Engn, Baltimore, MD 21218 USA
关键词
D O I
10.1103/PhysRevE.66.011403
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In solution phase synthesis of nanoparticles, processes such as coarsening and aggregation can compete with nucleation and growth in modifying the particle size distribution in the system. We show that coarsening of ZnO and TiO2 nanoparticles in solution follows the Lifshitz-Slyozov-Wagner rate law for diffusion controlled coarsening originally derived for colloidal systems with micrometer-sized particles, where the average particle size cubed is proportional to time. The rate constant for growth of ZnO in propanol is in the range 10(-4)-10(-2) nm(3) s(-1) and is dependent on the precursor anion and temperature. The coarsening of TiO2 nanoparticles from aqueous Ti(IV) alkoxide solutions is slower due to the low solubility of TiO2 with the rate constant in the range 10(-5)-10(-3) nm(3) s(-1) for temperatures between 150 degreesC and 220 degreesC. Epitaxial attachment of TiO2 particles becomes significant at higher temperatures and longer times. We show that the dominant parameters controlling the coarsening kinetics are solvent, precursor salt, and temperature.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Binding Energy of Metal Oxide Nanoparticles
    Parra, R. D.
    Farrell, H. H.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (12): : 4786 - 4791
  • [32] Metal oxide nanoparticles: Fabrication and characterization
    Drmosh, Qasem A.
    Saleh, Tawfik A.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 243
  • [33] Metal Oxide Nanoparticles as Biomedical Materials
    Nikolova, Maria P.
    Chavali, Murthy S.
    BIOMIMETICS, 2020, 5 (02)
  • [34] Mechanochemical synthesis of metal oxide nanoparticles
    Takuya Tsuzuki
    Communications Chemistry, 4
  • [35] Antitumor Activities of Metal Oxide Nanoparticles
    Pilar Vinardell, Maria
    Mitjans, Montserrat
    NANOMATERIALS, 2015, 5 (02): : 1004 - 1021
  • [36] Peptide binding to metal oxide nanoparticles
    Schwaminger, S. P.
    Blank-Shim, S. A.
    Scheifele, I.
    Fraga-Garcia, P.
    Berensmeier, S.
    FARADAY DISCUSSIONS, 2017, 204 : 233 - 250
  • [37] Photodeposition of metals on metal oxide nanoparticles
    Oliva, Brittany L.
    Tarr, Matthew A.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2009, 237
  • [38] Surface chemistry of metal oxide nanoparticles
    Foster, Michelle
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 250
  • [39] Metal oxide nanoparticles and their applications in nanotechnology
    Murthy S. Chavali
    Maria P. Nikolova
    SN Applied Sciences, 2019, 1
  • [40] Thiol adsorption on metal oxide nanoparticles
    Grimm, Owen C.
    Somaratne, R. M. Dulanga S.
    Wang, Yiwen
    Kim, Sol
    Whitten, James E.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2021, 23 (14) : 8309 - 8317