Coarsening of metal oxide nanoparticles

被引:129
|
作者
Oskam, G
Hu, ZS
Penn, RL
Pesika, N
Searson, PC [1 ]
机构
[1] Johns Hopkins Univ, Dept Mat Sci & Engn, Baltimore, MD 21218 USA
[2] Johns Hopkins Univ, Dept Earth & Planetary Sci Sci & Engn, Baltimore, MD 21218 USA
[3] Johns Hopkins Univ, Dept Chem Engn, Baltimore, MD 21218 USA
关键词
D O I
10.1103/PhysRevE.66.011403
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In solution phase synthesis of nanoparticles, processes such as coarsening and aggregation can compete with nucleation and growth in modifying the particle size distribution in the system. We show that coarsening of ZnO and TiO2 nanoparticles in solution follows the Lifshitz-Slyozov-Wagner rate law for diffusion controlled coarsening originally derived for colloidal systems with micrometer-sized particles, where the average particle size cubed is proportional to time. The rate constant for growth of ZnO in propanol is in the range 10(-4)-10(-2) nm(3) s(-1) and is dependent on the precursor anion and temperature. The coarsening of TiO2 nanoparticles from aqueous Ti(IV) alkoxide solutions is slower due to the low solubility of TiO2 with the rate constant in the range 10(-5)-10(-3) nm(3) s(-1) for temperatures between 150 degreesC and 220 degreesC. Epitaxial attachment of TiO2 particles becomes significant at higher temperatures and longer times. We show that the dominant parameters controlling the coarsening kinetics are solvent, precursor salt, and temperature.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Differential cytotoxicity of metal oxide nanoparticles
    Chen, Jian
    Zhu, Jinmin
    Cho, Hyun-Hee
    Cui, Kemi
    Li, Fuhai
    Zhou, Xiaobo
    Rogers, Jack T.
    Wong, Stephen T. C.
    Huang, Xudong
    JOURNAL OF EXPERIMENTAL NANOSCIENCE, 2008, 3 (04) : 321 - 328
  • [22] Metal oxide nanoparticles with low toxicity
    Ng, Alan Man Ching
    Guo, Mu Yao
    Leung, Yu Hang
    Chan, Charis M. N.
    Wong, Stella W. Y.
    Yung, Mana M. N.
    Ma, Angel P. Y.
    Djurisic, Aleksandra B.
    Leung, Frederick C. C.
    Leung, Kenneth M. Y.
    Chan, Wai Kin
    Lee, Hung Kay
    JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY, 2015, 151 : 17 - 24
  • [23] Metal and Metal Oxide Nanoparticles for Photoelectrochemical Materials and Devices
    Takahashi, Yukina
    Yamada, Sunao
    Tatsuma, Tetsu
    ELECTROCHEMISTRY, 2014, 82 (09) : 726 - 729
  • [24] Metal and Metal Oxide Nanoparticles in Caries Prevention: A Review
    Nizami, Mohammed Zahedul Islam
    Xu, Veena W.
    Yin, Iris X.
    Yu, Ollie Y.
    Chu, Chun-Hung
    NANOMATERIALS, 2021, 11 (12)
  • [25] Impacts of metal and metal oxide nanoparticles on marine organisms
    Baker, Tony J.
    Tyler, Charles R.
    Galloway, Tamara S.
    ENVIRONMENTAL POLLUTION, 2014, 186 : 257 - 271
  • [26] Removal of Pb by metal oxide nanoparticles
    Ossman, Mona
    Abdelfattah, Marwa
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 246
  • [27] Facile route to metal oxide nanoparticles
    不详
    CHEMICAL & ENGINEERING NEWS, 2006, 84 (03) : 26 - 26
  • [28] Synthesis and characterization of metal oxide nanoparticles
    Oskam, G
    Penn, RL
    Hu, ZS
    Searson, PC
    EMERGING FIELDS IN SOL-GEL SCIENCE AND TECHNOLOGY, 2003, : 149 - +
  • [29] Metal oxide nanoparticles and their applications in nanotechnology
    Chavali, Murthy S.
    Nikolova, Maria P.
    SN APPLIED SCIENCES, 2019, 1 (06):
  • [30] Metal oxide nanoparticles as bactericidal agents
    Stoimenov, PK
    Klinger, RL
    Marchin, GL
    Klabunde, KJ
    LANGMUIR, 2002, 18 (17) : 6679 - 6686