PARTICLE APPROXIMATION OF THE ONE DIMENSIONAL KELLER-SEGEL EQUATION, STABILITY AND RIGIDITY OF THE BLOW-UP

被引:10
作者
Calvez, Vincent [1 ,2 ]
Gallouet, Thomas O. [3 ]
机构
[1] Ecole Normale Super Lyon, CNRS, Unite Math Pures & Appl, UMR 5669, F-69364 Lyon, France
[2] Project Team Inria NUMED, Lyon, France
[3] Inria Lille Nord Europe, Project Team MEPHYSTO, Villeneuve Dascq, France
关键词
Keller-Segel; chemotaxis; blow-up; critical mass; particles methods; gradient flow; REFINED ASYMPTOTICS; POINT DYNAMICS; SINGULAR LIMIT; MODEL; AGGREGATION; CONVERGENCE; SCHEME;
D O I
10.3934/dcds.2016.36.1175
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate a particle system which is a discrete and deterministic approximation of the one-dimensional Keller-Segel equation with a logarithmic potential. The particle system is derived from the gradient flow of the homogeneous free energy written in Lagrangian coordinates. We focus on the description of the blow-up of the particle system, namely: the number of particles involved in the first aggregate, and the limiting profile of the rescaled system. We exhibit basins of stability for which the number of particles is critical, and we prove a weak rigidity result concerning the rescaled dynamics. This work is complemented with a detailed analysis of the case where only three particles interact.
引用
收藏
页码:1175 / 1208
页数:34
相关论文
共 36 条
[1]  
[Anonymous], 2005, PROGR NONLINEAR DIFF
[2]  
[Anonymous], 2008, Metric Spaces and in the Space of Probability Measures
[3]  
Blanchet A., 2011, S MIN QU D RIV PARTI, V2011-2012, P1, DOI http://eudml.org/doc/251170
[4]  
Blanchet A., 2006, Electron. Differential Equations, V2006, P1
[5]  
Blanchet A, 2008, COMMUN PUR APPL MATH, V61, P1449, DOI 10.1002/cpa.20225
[6]   Convergence of the mass-transport steepest descent scheme for the subcritical Patlak-Keller-Segel model [J].
Blanchet, Adrien ;
Calvez, Vincent ;
Carrillo, Jose A. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 46 (02) :691-721
[7]  
CALVEZ V., 2007, Contemp.Math, V429, P45
[8]  
Calvez V, 2012, P AM MATH SOC, V140, P3515
[9]   NUMERICAL SIMULATION OF DIFFUSIVE AND AGGREGATION PHENOMENA IN NONLINEAR CONTINUITY EQUATIONS BY EVOLVING DIFFEOMORPHISMS [J].
Carrillo, J. A. ;
Moll, J. S. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2009, 31 (06) :4305-4329
[10]   NON-LINEAR ASPECTS OF CHEMOTAXIS [J].
CHILDRESS, S ;
PERCUS, JK .
MATHEMATICAL BIOSCIENCES, 1981, 56 (3-4) :217-237