Stochastic bifurcations caused by multiplicative noise in systems with hard excitement of auto-oscillations

被引:28
作者
Bashkirtseva, Irina [1 ]
Ryazanova, Tatyana [1 ]
Ryashko, Lev [1 ]
机构
[1] Ural Fed Univ, Dept Math, Ekaterinburg, Russia
来源
PHYSICAL REVIEW E | 2015年 / 92卷 / 04期
关键词
HOPF-BIFURCATION; VAN;
D O I
10.1103/PhysRevE.92.042908
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study a stochastic dynamics of systems with hard excitement of auto-oscillations possessing a bistability mode with coexistence of the stable equilibrium and limit cycle. A principal difference in the results of the impact of additive and parametric random disturbances is shown. For the stochastic van der Pol oscillator with increasing parametric noise, qualitative transformations of the probability density function form "crater"-"peak + crater"-"peak" are demonstrated by numerical simulation. An analytical investigation of such P bifurcations is carried out for the stochastic Hopf-like model with hard excitement of self-oscillations. A detailed parametric description of the response of this model on the additive and multiplicative noise and corresponding stochastic bifurcations are presented and discussed.
引用
收藏
页数:10
相关论文
共 28 条
[1]  
Andronov A.A., 1966, Theory of oscillators
[2]  
Anishchenko V. S., 2007, NONLINEAR DYNAMICS C
[3]   The stochastic brusselator:: Parametric noise destroys Hopf bifurcation [J].
Arnold, L ;
Bleckert, G ;
Schenk-Hoppé, KR .
STOCHASTIC DYNAMICS, 1999, :71-92
[4]  
Arnold L., 1998, Random Dynamical Systems
[5]   Analysis of noise-induced transitions for Hopf system with additive and multiplicative random disturbances [J].
Bashkirtseva, Irina ;
Ryashko, Lev ;
Schurz, Henri .
CHAOS SOLITONS & FRACTALS, 2009, 39 (01) :72-82
[6]  
Bazykin A, 1998, Nonlinear dynamics of interacting populations, V11
[7]   POSTPONEMENT OF HOPF BIFURCATIONS BY MULTIPLICATIVE COLORED NOISE [J].
FRONZONI, L ;
MANNELLA, R ;
MCCLINTOCK, PVE ;
MOSS, F .
PHYSICAL REVIEW A, 1987, 36 (02) :834-841
[8]   Stochastic resonance [J].
Gammaitoni, L ;
Hanggi, P ;
Jung, P ;
Marchesoni, F .
REVIEWS OF MODERN PHYSICS, 1998, 70 (01) :223-287
[9]   When can noise induce chaos? [J].
Gao, JB ;
Hwang, SK ;
Liu, JM .
PHYSICAL REVIEW LETTERS, 1999, 82 (06) :1132-1135
[10]  
Gardiner CW., 1997, HDB STOCHASTIC METHO