EXISTENCE OF MAXIMAL SEMIDEFINITE INVARIANT SUBSPACES AND SEMIGROUP PROPERTIES OF SOME CLASSES OF ORDINARY DIFFERENTIAL OPERATORS

被引:0
作者
Pyatkov, S. G.
机构
[1] 628012, Hanty-Mansiisk
来源
OPERATORS AND MATRICES | 2014年 / 8卷 / 01期
关键词
Dissipative operator; Krein space; invariant subspace; analytic semigroup; similarity; STURM-LIOUVILLE OPERATORS; SIMILARITY PROBLEM; SPECTRAL THEORY; INDEFINITE; INTERPOLATION;
D O I
10.7153/oam-08-13
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe sufficient conditions for the operator Lu = 1/g(x)L(0)u, with L-o an ordinary differential operator dissipative on its domain and a function g changing its sign, to have maximal semidefinite invariant subspaces in the Krein space 122,8(a,b) with the indefinite inner product [u, v] = integral(b)(a) g(x)u(x)v(x) over bar dx. The semigroup properties of the restrictions of an operator to these subspaces are studied. The similarity problem of L to a selfadjoint operator is discussed.
引用
收藏
页码:237 / 254
页数:18
相关论文
共 50 条