Block algebra in two-component BKP and D type Drinfeld-Sokolov hierarchies

被引:24
作者
Li, Chuanzhong [1 ]
He, Jingsong [1 ]
机构
[1] Ningbo Univ, Dept Math, Ningbo 315211, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
KADOMTSEV-PETVIASHVILI EQUATION; ADDITIONAL SYMMETRIES; INTEGRABLE HIERARCHIES; TRANSFORMATION GROUPS; SOLITON-EQUATIONS; STRING EQUATION; TODA HIERARCHY; REPRESENTATION; OPERATOR; KP;
D O I
10.1063/1.4829438
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We construct generalized additional symmetries of a two-component BKP hierarchy defined by two pseudo-differential Lax operators. These additional symmetry flows form a Block type algebra with some modified (or additional) terms because of a B type reduction condition of this integrable hierarchy. Further we show that the D type Drinfeld-Sokolov hierarchy, which is a reduction of the two-component BKP hierarchy, possess a complete Block type additional symmetry algebra. That D type Drinfeld-Sokolov hierarchy has a similar algebraic structure as the bigraded Toda hierarchy which is a differential-discrete integrable system. (C) 2013 AIP Publishing LLC.
引用
收藏
页数:14
相关论文
共 43 条
[1]  
Adler M, 1997, COMMUN PUR APPL MATH, V50, P241, DOI 10.1002/(SICI)1097-0312(199703)50:3<241::AID-CPA3>3.0.CO
[2]  
2-B
[3]   A LAX REPRESENTATION FOR THE VERTEX OPERATOR AND THE CENTRAL EXTENSION [J].
ADLER, M ;
SHIOTA, T ;
VANMOERBEKE, P .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 171 (03) :547-588
[4]  
[Anonymous], 1984, Adv. Stud. Pure Math.
[5]  
[Anonymous], 1994, LECT INTEGRABLE SYST
[6]   A GENERALIZED SATO EQUATION AND THE W-INFINITY ALGEBRA [J].
AOYAMA, S ;
KODAMA, Y .
PHYSICS LETTERS B, 1992, 278 (1-2) :56-62
[7]  
Block R., 1958, Proc. Am. Math. Soc., V9, P613
[8]   The extended bigraded Toda hierarchy [J].
Carlet, Guido .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (30) :9411-9435
[9]  
Chen M, 2012, J DIABETES RES CLIN, V1, P1
[10]   The generalized additional symmetries of the two-Toda lattice hierarchy [J].
Cheng, Jipeng ;
Tian, Ye ;
Yan, Zhaowen ;
He, Jingsong .
JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (02)